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Abstract. One way of using the entropy criteria in learning systems is to mini-
mize the entropy of the error between two variables: typically, one is the output
of the learning system and the other is the target. This framework has been used
for regression. In this paper we show how to use the minimization of the entropy
of the error for classification.
The minimization of the entropy of the error implies a constant value for the
errors. This, in general, does not imply that the value of the errors is zero. In
regression, this problem is solved by making a shift of the final result such that
it’s average equals the average value of the desired target. We prove that, under
mild conditions, this algorithm, when used in a classification problem, makes the
error converge to zero and can thus be used in classification.

1 Introduction

Since the introduction by Shannon [8] of the concept of entropy, and the posterior gene-
ralization made by Renyi [7], that entropy and information theory concepts have been
applied in learning systems.
Shannon’s entropy,

HS(x) =−
N

∑
i=1

pi logpi (1)

measures de average amount of information conveyed by the random variablex whose
N possible values occur with probabilitypi . An extension of the entropy concept to
continuous random variablesx∈C is:

H(x) =−
∫

C
f (x)log f(x)dx (2)

where f(x) is the probability density function (pdf) of the random variablex.
The use of entropy and relative concepts have several applications in learning systems.
These applications are mostly based on finding the mutual information and the conse-
quent relations between the distributions of the variables involved in a particular prob-
lem. Linsker [5] proposed theInfomaxprinciple that consists on the maximization of
Mutual Information (MI) between the input and the output of the neural network. Mu-
tual information gives rise to either unsupervised or supervised learning rules depending



on how the problem is formulated. We can have unsupervised learning when we manip-
ulate the mutual information between the outputs of the learning system or between its
input and output. Examples of these approaches are independent component analysis
and blind source separation [1, 2]. If the goal is to maximize the mutual information be-
tween the output of a mapper and an external desired response, then learning becomes
supervised.
With the goal of making supervised information-theoretic learning, several approaches
have been proposed:

– CIP (Cross Information Potential) - The CIP tries to establish the relation between
the pdfs of two variables. These variables could be the output of the network and
the desired targets or the output of each layer and the desired targets [10].

– The entropy maximization of the output of the network and simultaneously the
minimization of the entropy of the output of the data that belongs to a specific class.
This method was proposed by Haselsteiner [4] as a way of performing supervised
learning without numerical targets.

– MEE - Consists of the minimization of the error entropy between the outputs of the
network and the desired targets. This approach was proposed by Denis Erdogmus
[3] and used to make time series prediction.

We made some experiments with these proposed three methods with the goal of per-
forming supervised classification but we did not achieve good results. This lead us to
develop a new approach as described next.

2 Renyi’s Quadratic Entropy and Back-propagation Algorithm

Renyi extended the concept of entropy and defined the Renyi’sα entropy, in discrete
cases, as:

HRα(x) =
1

1−α
log

(
N

∑
i=1

pα
i

)
(3)

which tends to Shannon entropy whenα→ 1. If we take the Renyi’s Quadratic Entropy
(α = 2), to continuous random variables, we obtain

HR2(x) =− log

(∫

C
[ f (x)]2dx

)
(4)

Renyi’s Quadratic Entropy in conjunction with the Parzen Window probability density
function estimation with gaussian kernel allows, as we will see later, the determination
of the entropy in a non-parametric, very practical and computationally efficient way.
The only estimation involved is the pdf estimation.
Let a = ai ∈ Rm, i = 1, ...,N, be a set of samples from the outputY ∈ Rm of a mapping
Rn 7→Rm :Y = g(w,x), wherew is a set of Neural Network weights. The Parzen window
method estimates the pdff (y) as

f (y) =
1

Nhm

N

∑
i=1

K(
y−ai

h
) (5)



whereN is the number of data points,K is a kernel function, andh the bandwidth or
smoothing parameter. If we use a simple Gaussian kernel (beingI the identity matrix)

G(y, I) =
1

(2π)
m
2

exp

(
−1

2
yTy

)
(6)

then, the estimated pdff (y) using Parzen window and Gaussian kernel will be:

f (y) =
1

Nhm

N

∑
i=1

G

(
y−ai

h
, I

)
(7)

The Renyi’s Quadratic Entropy can be estimated, applying the integration of gaus-
sian kernels [10], by

ĤR2(y) =− log




∫ +∞

−∞

(
1

Nhm

N

∑
i=1

G(
y−ai

h
, I)

)2

dx




=− log

[
1

N2h2m−1

N

∑
i=1

N

∑
j=1

G(
ai −a j

h
,2I)

]
=− logV(a)

(8)

Principe [6] callsV(a) the information potentialin analogy with the potential field
in physics. For the same reason he also calls the derivative ofV(a) theinformation force
F . Therefore

F =
∂
∂a

V(a) =
∂
∂a

[
1

N2h2m−1

N

∑
i=1

N

∑
j=1

G(
ai −a j

h
,2I)

]

Fi =− 1
2N2h2m+1

N

∑
j=1

G(
ai −a j

h
,2I)(ai −a j)

(9)

This information forceis back-propagated into the MLP the same way as in the MSE
algorithm. The update of the neural network weights is performed using∆w = ±η ∂V

∂w .
The± means that we can maximize(+) or minimize(−) the entropy.

3 Supervised Classification with Error Entropy Minimization

We make use of the information-theoretic concepts, applying an entropy approach to
the classification task using the entropy minimization of the error between the output of
the network and the desired targets: the Error Entropy Minimization, EEM.
Let d ∈ Rm be the desired targets andY the network output from the classification
problem andei = di −Yi the error for each data samplei of a given data set. The error
entropy minimization approach, introduced by Erdogmus [3] in time series prediction,



states that Renyi’s Quadratic Entropy of the error, with pdf approximated by Parzen
window with Gaussian kernel, has minima along the line where the error is constant
over the whole data set. Also the global minimum of this entropy is achieved when the
pdf of the error is a Dirac delta function.
Taking the quadratic entropy of the error

ĤR2(e) =− log

[
1

N2h2m−1

N

∑
i=1

N

∑
j=1

G

(
ei −ej

h
,2I

)]
(10)

we clearly see that this entropy will be minimum when the diferences of all the error
pairs (ei − ej) are zero. This means that the errors are all the same. In classification
problems with separable classes, the goal is to get all the errors equal to zero, meaning
that we don’t get any errors in the classification. In classification problems with non
separable classes the goal is to achieve the Bayes error.
In the following we prove that, in classification problems, imposing some conditions to
the output range and target values, the EEM algorithm makes the error converge to zero.
The objective is to minimize the entropy of the errore= d−Y and, as stated above, to
achieve the goal ofe= 0 for all data samples.

Theorem 1. Consider a two class supervised classification problem with a unidimen-
sional output vector.Y ∈ [r,s] is the output of the network andd ∈ {a,b} the target
vector or the desired output. Ifr = a, s= b anda=−b then the application of the EEM
algorithm makes the errors on each data point be equal and equal to zero.

Proof. Define the targets asd ∈ {−a,a} and consider the output of the network as
Y ∈ [−a,a].The errors are given bye= d−Y.
If the true target for a given inputxi is {a} then the errorei varies inP = [0,2a].
If the true target for a given inputx j is {−a} then the errorej varies inQ = [−2a,0].
Since the minimization of the entropy of the error makes the errors all have the same
value,r, we getei = ej = r.
r must be inP andQ. P∩Q = {0} thusr = 0 andei = ej = 0.

A similar proof can be made for multidimensional output vectors.

Therefore, by minimizing the Renyi’s Quadratic Entropy of the error, applying the
back-propagation algorithm, we find the weights of the neural network that yield good
results in classification problems as we illustrate in the next section.

4 Experiments

We made two experiments, using multilayer perceptrons (MLP), to show the application
of the EEM algorithm to data classification. The learning rateη and the smoothing
parameterh were experimentally selected. However this is one subject that must be
studied with more detail in our subsequent work.
In the first experiment we created a data set consisting of200data points, constituting
4 separable classes (figure 1).
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Fig. 1. Dataset for the first problem

Several (2;n;2) MLP’s were trained and tested 40 times, 150 epochs, using EEM and
also for MSE. We maden vary from3 to 6. Each time, half of the data set was randomly
used for training and the other half for testing. The results of the first experiment are
shown in table 1.

Table 1.The error results of the first experiment (mean error± std)

n=3 4 5 6 STD
EEM 2.43±1.33 2.20±1.20 2.01±1.09 2.09±1.02 0.18
MSE 2.93±1.46 2.55±1.24 2.64±1.13 2.91±1.73 0.19

In the second experiment we used the well known Fisher’s IRIS data set. It consists
of 3 classes, 4 numeric attributes, 150 instances. One class is linearly separable from
the other two, but the other two are not linearly separable from each other.

Several (2;n;2) MLP’s were trained and tested 40 times, 150 epochs, for EEM and
also for MSE. We maden varying from 3 to 8. Each time, half of the data set was
randomly used for training and the other half for testing. The results of the second
experiment are shown in table 2.

Table 2.The error results for IRIS data set (mean error± std)

n=3 4 5 6 7 8 STD
EEM 4.36±1.12 4.43±1.30 4.38±1.34 4.30±1.16 4.41±1.42 4.31±1.27 0.05
MSE 4.72±4.75 4.75±1.27 4.15±1.32 3.97±1.05 5.18±4.74 4.65±1.32 0.44



The results show, in almost every experiments, a small, but better, performance
of the EEM algorithm. They also show, especially in the second experiment, that the
variation of the error alongn is smaller in the EEM than in the MSE (last column STD
- standard deviation over the differentn sessions). This could mean that the relation
between the complexity of the MLP and the results of the EEM algorithm is not so tight
as for the MSE algorithm, although this relation must be studied with more detail in our
future work.

5 Conclusions

We have presented, in this paper, a new way of performing classification by using the
entropy of the error between the output of the MLP and the desired targets, as the
function to minimize. The results show that this is a valid approach for classification
and, despite the small diference comparing to MSE, we expect to achieve better results
in high dimensional data. The complexity of the algorithm,(N2), imposes some limita-
tions on the number of samples in order to get results in a reasonable time. Some aspects
in the implementation of the algorithm will be studied in detail in our future work: how
to chooseh andη and make their values adjust during the training phase to improve
the classification performance. We have already tested the adjustment ofh during the
training phase, but we did not achieved good results. We know that the variation ofη
during the training process improves the performance [9]. So, we plan to adjustη as a
function of the error entropy instead of adjusting it as a function of the MSE.
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