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Abstract. The purpose of this paper is to introduce and validate Ran-
dom Brains, a novel artificial neural network based feature selection tech-
nique. Feature selection is widely used in high-dimensional data and it
aims on removing irrelevant or redundant data, providing faster predic-
tors without a significant decrease in model performance. Random Brains,
inspired by Breiman’s Random Forests, are bagged ensembles of predic-
tive neural network models that use randomly selected subsets of features.
This paper validates Random Brains on several classification and regres-
sion benchmark data sets by comparing its performance to similar models
with features selected based on sensitivity analysis.

1 Introduction to feature selection

Feature or variable selection is an important step in understanding and explain-
ing the performance of a predictive model. The terms feature selection and
variable selection can be use interchangeably in this paper, although some au-
thors reserve the terminology features for newly made up (latent) variables from
the original (manifest) variables [7].

Because of interdependencies and inter-correlations between variables, there
is no unique set of reduced variables that best explains a predictive model.
Variable selection generally aims to identify a reduced set of variables that allows
for the formulation of predictive models with little loss or in some cases better
performance accuracy. While such a reduced set of variables is not unique,
preference is usually given to a compact set of variables that also make sense
to the domain expert and that allow for the formulation of easy to understand
explanative rules for the model.

2 Random Brains

Random Brains refers to an artificial neural networks ensemble method for vari-
able selection inspired by Breiman’s random forests [2]. Random forests are a
combination of decision tree predictors that uses randomly selected features or
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combinations of features as inputs. There are several advantages to methods
based on the random forests concept such as: (i) efficiency on large data sets;
(ii) generation of an unbiased estimation of the generalization error; (iii) esti-
mation of the relative variable importance; (iv) robustness to outliers and noise;
and (v) simple and straightforward parallelization of the algorithm.

In the practical implementation of the Random Brains algorithm the number
of neural networks in the ensemble (K) and the number of randomly selected
features for each ensemble subset (R) need to be pre-specified. The neural
networks are trained by early stopping (by using a validation set consisting of
10 % of the training patterns). A key issue with random brain models is to let
neural networks train to completion without human oversight. This is achieved
by setting layer-specific learning parameters following the procedures outlined in
LeCun’s Efficient BackProp [11] and using additional refinements reported in [3].
The validation performance metric for each neural network in the Random Brains
ensemble is captured via the Q2 metric (explained in Section 4): a tally of the
relative feature importance is updated by adding 1 − Q2 on the tally for the
selected features. This procedure leads to a hierarchy of features based on their
relevance or relative performance as depicted in Figure 1. Useful information can
be obtained from this chart: if the chart is flat features are equivalently relevant;
if the chart is not flat there are features with different levels of relevance and
the chart can guide us on selecting the number of features for the final model.
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Fig. 1: Feature relevance with Random Brains and sensitivity analysis

The final stage consists of choosing the top L features to use in the final
neural network model. The selection of L can be based on different strategies
depending on the problem and on the shape of the feature relevance chart.
The feature selection procedure can proceed either iteratively or greedy. A
detailed analysis of various benchmark problems did not show any performance
advantage of iterative feature selection over greedy feature selection. Therefore
all variable selection procedures in this appear are based on a greedy approach.
Because the purpose of this paper is to validate the performance of the Random
Brains method, we did not attempt to identify an optimal subset of features.
A comparison is made on the predictive performance of models with different
subsets of features (90 percent of the features, and 100, 30 and the actual number
of relevant features) to similar models using a feature selection methodology



based on sensitivity analysis [10].

3 Data sets

Six benchmark data sets were used to assess the Random Brains feature selec-
tion performance (3 binary classification problems and 3 regression problems).
Theses data sets were selected because they cover a wide range with respect to
the number of data and/or the number of features.
Friedman data set [5] is a synthetic regression data set composed of 5 relevant
features (uniformly distributed random variables N(0, 1) and 5 additional Gaus-
sian distributed variables represented by ε). The response y is related to the 5
uniformly random variables according to y = 10 sin(πx1x2) + 20(x3 + 0.5)2 +
10x4 + 5x5 + ε. A total of 1000 data were generated (800 training data and 200
test data).
Boiling Point data [4] are QSAR (Quantitative Structure Activity Relation-
ship) regression data used for the prediction of the boiling point of 298 molecules,
30 of which are used for test data. Typically for such QSAR data sets about 30
variables can be isolated to make good predictive models.
Abalone data [12] consists of 4177 patterns, originally with 8 attributes to
predict the age of abalones. This particular data set was augmented with 500
uniformly distributed random numbers in [0, 1].
Leukemia data set [6] consists of microarray expression data for 7129 genes to
distinguish between two different kinds of leukemia. The first 38 samples are used
for training and the last 34 samples for testing. A good binary classifications
can often be made based on a selection of 30–100 genes.
Arcene data [8] are based on mass spectrometry data to distinguish cancer
patients from normal patients and were augmented with additional random fea-
tures for the NIPS 2003 feature selection competition. There are 10000 features
and the data set is divided into 100 training data and 100 test data.
Advertising data set [1] is used as a binary classification problem to remove
internet advertisements from web-based images. There are 3279 data with 1558
features in 2 unbalanced classes (2821 non-ads and 458 ads). The data were
randomly split and 2500 data were used for training.

4 Performance metrics

We use a number of performance metrics to evaluate the predictive models, as
no one metric sufficiently quantifies model quality. For regression, we start with
the mean absolute error (MAE) and the root mean squared error (RMSE):

MAE =
1

n

n∑
i=1

|ŷi − yi| RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)
2

where yi and ŷi are the true and predicted responses of the ith data. Note
that because these quantities are data dependent, they have no intrinsic value



unless the regressor is Mahalanobis-scaled or standardized. Pearson’s correlation
coefficient r2(y, ŷ) is used to assess the strength of the linear relationship between
observed and fitted response values. R2 is used to assess how well predicted
values lie on the main diagonal and is computed as:

R2 = 1−

ntrain∑
i=1

(yi − ŷi)
2

ntrain∑
i=1

(yi − ȳ)
2

where ȳ is the average response. For reasonable prediction models, r2 and R2 are
often very similar. We restrict the use of r2 and R2 to training data predictions,
and q2 = 1− r2test and Q2 = 1−R2

test are used to assess test data predictions.
We also use a series of metrics for assessing classification results. The bal-

anced percent correct (BPC) quantifies the average classification rates between
the positive and negative classes. The area under the ROC curve (AUC) [14] is
used to assess binary classifications. This metric can be extended to multi-class
classification and regression tasks, and we use this metric when comparing re-
gression benchmarks as well. Hubert and Arabie’s Adjusted Rand Index (ARI)
ranges over [0, 1] and assesses the randomness of the classification; the reader is
directed to [9] for a detailed explanation of this metric.

5 Comparative study and discussion

Table 1 shows the performance metrics for the three regression data sets for neu-
ral network models with all features and reduced numbers of features obtained
from Random Brains and sensitivity analysis. The Random Brains model con-
sists of 200 models with a random set of selected features that consist of 50% of
the original features. All neural network models have two hidden layers (with 23
and 11 neurons respectively) and were trained using early stopping, where the
stopping point is determined using a validation set (10% of the training data).
The number of features listed in Table 2 consists of the original number of fea-
tures, 90% of the original number of features and depending on the data set 100
features, 30 features and the final relevant number of features. For the Friedman
data both sensitivity analysis and Random Brains resulted in the same 5 final
features (Fig. 1), and the relative strengths of features 1 and 2 obtained with
Random Brains are consistent with their symmetric appearance in the equation
that generated the data. For the boiling point and abalone data the features se-
lected with sensitivity analysis lead to neural networks with a superior predictive
performance, but the performance metrics with features selected with Random
Brains are close.

Table 2 shows the performance metrics for the three classification data sets
for neural network models with all features and reduced numbers of features
obtained with Random Brains and sensitivity analysis. The followed procedures
for feature selection and neural network modeling were identical to those used
for the regression data. It should be noted that for the arcene data the Random



Brains feature selection method outperformed sensitivity analysis, while the re-
verse was true for the advertising data and the leukemia data. Contrary to the
regression data, there is a significant difference in performance metrics for the
data sets for which sensitivity analysis gives a better classification metric.

Data Set Method # feats q2 Q2 AUC RMSE MAE
Friedman All 10 0.092 0.093 0.961 1.453 1.137

RB 5 0.054 0.055 0.983 1.115 0.872
Sen 5 0.054 0.055 0.983 1.115 0.872

Boiling Point All 184 0.022 0.027 1.000 11.372 8.358
RB 166 0.026 0.032 1.000 12.574 9.433
RB 100 0.016 0.017 0.996 9.196 6.720
RB 30 0.016 0.018 0.996 9.474 7.241
RB 10 0.023 0.024 1.000 10.889 8.026
Sen 166 0.030 0.033 0.991 12.768 9.581
Sen 100 0.023 0.026 0.996 11.193 7.645
Sen 30 0.013 0.015 1.000 8.684 6.767
Sen 10 0.036 0.036 1.000 13.287 9.753

Abalone All 508 0.750 0.782 0.767 2.932 2.115
RB 100 0.632 0.649 0.812 2.670 1.947
RB 30 0.582 0.583 0.829 2.530 1.825
RB 8 0.494 0.495 0.852 2.333 1.649
Sen 100 0.558 0.563 0.823 2.486 1.791
Sen 30 0.574 0.576 0.841 2.517 1.774
Sen 8 0.469 0.471 0.861 2.276 1.565
Sen 8 0.469 0.471 0.861 2.276 1.566

Table 1: Performance metrics for feature selection with Random brains and
Sensitivity analysis for the regression data sets.

Data set Method #feats Q2 AUC BRC ARI RMSE MAE
Arcene All 10000 0.53 0.89 81.74 0.31 0.73 0.48

RB 9000 0.45 0.91 85.39 0.44 0.67 0.39
RB 100 0.86 0.79 71.59 0.24 0.92 0.53
Sen 9000 0.57 0.91 84.01 0.68 0.75 0.40
Sen 100 0.84 0.74 69.16 0.10 1.03 0.65

Advertising All 1558 0.15 0.98 96.26 0.85 0.26 0.07
RB 1402 0.18 0.99 94.19 0.82 0.29 0.09
RB 100 0.48 0.90 80.69 0.65 0.47 0.21
Sen 1402 0.16 0.98 95.41 0.86 0.26 0.06
Sen 100 0.20 0.98 94.97 0.84 0.30 0.06

Leukemia All 7129 0.46 0.96 90.00 0.52 0.67 0.26
RB 6111 0.60 0.94 81.43 0.40 0.76 0.36
RB 100 0.47 0.93 82.14 0.38 0.67 0.40
RB 30 0.85 0.85 71.43 0.23 0.91 0.53
RB 10 0.84 0.64 68.93 0.09 1.01 0.65
Sen 6111 0.64 0.94 83.93 0.40 0.79 0.34
Sen 100 0.22 0.99 92.86 0.58 0.46 0.26
Sen 30 0.35 0.98 86.79 0.60 0.58 0.28
Sen 10 0.77 0.89 76.07 0.31 0.86 0.45

Table 2: Performance metrics for feature selection with Random Brains and
sensitivity analysis for the classification data sets.



6 Conclusions

This paper introduces and validates Random Brains, a novel neural network
based ensemble feature selection method. For some data sets Random Brains
led to better selected features when compared to sensitivity analysis. Future
research could be focused on determining the optimal number of models and
features for Random Brains, establishing proper scaling factors for the feature
tally, and developing guidelines to establish the final number of relevant selected
features.
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