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Abstract. Small strain shear modulus is one of the most important
geotechnical parameters to characterize soil stiffness. In-situ stiffness of
soils and rocks is much higher than was previously thought as finite el-
ement analysis have shown. Also, the stress-strain behaviour of those
materials is non-linear in most cases with small strain levels. The com-
mun approach for getting the small strain shear modulus is usually based
on measure of seismic wave velocities. Nevertheless, for design purposes
is very useful to derive that modulus from correlations with in-situ tests
output parameters. In this view, the use of Neural Networks seems very
appropriate as the complexity of the system keeps the problem very un-
friendly to treat following traditional data analysis methodologies. In this
work, the use of Neural Networks is proposed to estimate small strain
shear modulus for sedimentary soils from the basic or intermediate pa-
rameters derived from Marchetti Dilatometer Test.

1 Introduction

Maximum shear modulus, G0, is nowadays a key geotechnical parameter in soil
stiffness evaluation. The standard way to measure it is to evaluate compression
and shear wave velocities and thus obtain results supported by theoretical inter-
pretations. Despite the advantages appointed by the scientific community (e.g.
[1, 2] ), this approach has a drawback that is mainly appointed by the industrial
counterpart: the use of seismic measures implies a specific and more expensive
test than the ones in old-fashioned way. As a result, many authors have ded-
icated their efforts to correlate other in-situ test parameters with G0. Among
others, the works from Peck, Lunne, Marchetti or Cruz do it for the Standard
Penetration Test (SPT) [3], Piezocone Test (CPTu) [4] or Marchetti Dilatometer
Test (DMT) [5–7].

In this context, the DMT seems a very appropriate equipment to accomplish
that task with success. That may be explained as follows:

1. DMT measure a load range related with a specific displacement (ED)
2. ED may be used to deduce highly accurate stress-strain relationship, sup-

ported by the Theory of Elasticity
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3. The type of soil can be numerically represented by DMT Material Index, ID
4. The in situ density, overconsolidation ratio (OCR) and cementation influ-

ences can be represented by lateral stress index, KD

which allows for high quality calibration of the stress-strain relationship [7].
In this paper, an estimation of G0 derived from the DMT basic and interme-

diate parameters using neural networks is presented.

2 G0 prediction by DMT

Marchetti dilatometer test, commonly designated by DMT, has been increasingly
used and it is one of the most versatile tools for soil characterization. The test
was developed by Silvano Marchetti [5] and can be seen as a combination of both
Piezocone and Pressuremeter tests with some details that really makes it a very
interesting test available for modern geotechnical characterization [7]. The main
reasons for its usefulness on deriving geotechnical parameters are related to the
simplicity and the speed of execution generating quasi-continuous data profiles
with high accuracy and reproducibility.

In its essence, dilatometer is a stainless steel flat blade with a flexible steel
membrane in one of its faces. The blade is connected to a control unit on the
ground surface by a pneumatic-electrical cable that goes inside the position rods,
ensuring electric continuity and the transmission of the gas pressure required to
expand the membrane. The equipment is pushed (most preferable) or driven
into the ground, by means of a CPTu rig or similar, and the expansion test is
performed every 20cm. The (basic) pressures required for lift-off the diaphragm
(P0), to deflect 1.1mm the centre of the membrane (P1) and at which the di-
aphragm returns to its initial position (P2 or closing pressure) are recorded.
Due to the balance of zero pressure measurement method (null method), DMT
readings are highly accurate even in extremely soft soils, and at the same time
the blade is robust enough to penetrate soft rock or gravel. The test is found
especially suitable for sands, silts and clays.

Four intermediate parameters, Material Index (ID), Dilatometer Modulus
(ED), Horizontal Stress Index (KD) and Pore Pressure Index (UD), are deduced
from the basic pressures P0, P1 and P2, having some recognizable physical mean-
ing and some engineering usefulness [5], as it will be discussed below. The deduc-
tion of current geotechnical soil parameters is obtained from these intermediate
parameters covering a wide range of possibilities. In the context of the present
work, besides the basic pressures, only ED, ID and KD have a physical meaning
on the determination of G0, so they will be succinctly described as follows [7]:

1. Material Index, ID: Marchetti [5] defined Material Index, ID, as the differ-
ence between P1 and P0 basic measured pressures normalized in terms of
the effective lift-off pressure. In a simple form, it could be said that ID is
a “fine-content-influence meter”[7], providing the interesting possibility of
defining dominant behaviours in mixed soils.
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2. Horizontal Stress Index, KD: The horizontal stress index [5] was defined
to be comparable to the at rest earth pressure coefficient, K0, and thus its
determination is obtained by the effective lift-off pressure (P0) normalized by
the in-situ effective vertical stress. KD is a very versatile parameter since it
provides the basis to assess several soil parameters such as those related with
state of stress, stress history and strength, and shows dependency on several
factors namely cementation and ageing, relative density, stress cycles and
natural overconsolidation resulting from superficial removal, among others.

3. Dilatometer Modulus, ED: Stiffness behaviour of soils is generally repre-
sented by soil moduli, and thus the base for in-situ data reduction. Gener-
ally speaking, soil moduli depend on stress history, stress and strain levels
drainage conditions and stress paths. The more commonly used moduli are
constrained modulus (M), drained and undrained compressive Young mod-
ulus (E0 and Eu) and small-strain shear modulus (G0), this latter being
assumed as purely elastic and associated to dynamic low energy loading.

Maximum shear modulus, G0, is indicated by several investigators [2, 7, 10] as
the fundamental parameter of the ground. It can be accurately deduced through
shear wave velocities,

G0 = ρv2s (1)

where ρ stands for density and vs for shear wave velocity.

However, the use of a specific seismic test imply an extra cost, since it can only
supply this geotechnical parameter, leaving strength and insitu state of stress
information dependent on other tests. Therefore, several attempts to model the
maximum shear modulus as a function of DMT intermediate parameters for
sedimentary soils have been made in the last decade. Hryciw [11] proposed a
methodology for all types of sedimentary soils, developed from indirect method
of Hardin & Blandford [12]. This methodology ignores dilatometer modulus,
ED, commonly recognized as a highly accurate stress-strain evaluation, and also
lateral stress index, KD, and material index, ID, which are the main reasons for
the accuracy in stiffness evaluation offered by DMT tests [6]. Being so, the most
common approaches [13–15] with reasonable results concentrated in correlating
directly G0 with ED or MDMT (constrained modulus), which have revealed
linear correlations with slopes controlled by the type of soil. In 2006, Cruz [6]
proposed a generalization of this approach, trying to model the ratio RG ≡ G0

ED
as

a function of ID. In 2008, Marchetti [16] using the commonly accepted fact that
maximum shear modulus is influenced by initial density and considering that this
is well represented byKD, studied the evolution of both RG and G0/MDMT with
KD and found different but parallel trends as function of type of soil (that is
ID), recommending the second ratio to be used in deriving G0 from DMT, as
consequence of a lower scatter. In 2010, using the Theory of Elasticity, Cruz
[7] approximate G0 as a non-linear function of ID, ED and KD, from where a
promising median of relative errors close to 0.21 with a mean(standard deviation)
around 0.29(0.28) were obtained. It is worth mention that comparing with the
previous approach - RG - this approximation, using the same data, lowered the
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mean and median of relative errors in more than 0.05 maintaining the standard
deviation (Table 2).

In this work, to infer about the results quality it will be used some of the same
indicators used by Hryciw, Cruz and others that are: the median, the arithmetic
mean and standard deviation of the relative errors

δi
G̃0

=
|G̃0(i)−G0(i)|

|G0(i)|
; i = 1, 2, ..., N (2)

where G̃0(i) stands for the predicted value and G0(i) for the measured value
given by seismic wave velocities (which is assumed to be correct). A final remark
to point out that since in this work the no-intercept regression is sometimes
used, the R2 values will not be presented as they can been meaningful in this
case [17]. It is also worth to remark that in the context of DMT and from the
engineering point of view, median is the parameter of choice for assessing the
model quality [7] since the final value for maximum shear modulus relies on all
set of results obtained in each geotechnical unit or layer.

3 Data Sets, Experiments and Results

3.1 The WDS and PsS Data sets

In the forthcoming experiments there was used one subset of the WDS data
set named PsS data set. The WDS data set was used in the development of
the non-linear G0 approximation done by Cruz in [7], resulting from 860 DMT
measurements performed in Portugal by Cruz and world wide by Marchetti et
al. [16] (data kindly granted by Marchetti for the work presented in [7]), which
included data obtained in all kinds of sedimentary soils, namely clays, silty clays,
clayey silts, silts, sandy silts, silty sands and sands. Afterwards was used again
as base for the work by Cruz et al [8] where the DMT intermediate parameters
are used to estimate G0. Since the Marchetti data does not include the record
of the basic parameters, P0, P1 and u0, only the Portuguese subset (denoted by
PsS) will be used when trying to predict G0 from those parameters.

In order to have some comparisons between the present work and the one
made in [8], the WDS main statistical measures with respect to ID, ED, KD and
G0 parameters are given in Table 1 (in parenthesis the same measures for PsS).
Figures 1 and 2, where data from WDS and PsS, respectively, is represented
using MatLab function plotmatrix, aims a clear view of variables dispersion.
This is important in a Geotechnical point of view as it may show the (very)
different types of soil who serve has base to this work. It should be noted that
in Figure 2 the additional parameters P0, P1 and u0 are presented.

3.2 G0 prediction by DMT Parameters: A NN approach

In addition to the work reviewed in Section 2, in 2011, Cruz et al [8] went a lit-
tle further reported the fitting of G0 through the DMT intermediate parameters
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Values ID ED KD G0

min 0.05070 (0.05070) 0.3644 (0.3644) 0.9576 (0.9576) 6.430 (12.71)
max 8.814 (8.814) 94.26 (85.00) 24.61 (24.61) 529.2 (110.6)

median 0.5700 (0.2192) 13.44 (4.372) 3.575 (3.136) 77.91 (34.51)
mean 0.9134 (1.063) 18.83 (9.963) 4.916 (3.808) 92.52 (38.81)
std 1.074 (1.946) 18.83 (13.08) 3.608 (2.791) 69.61 (19.37)

Table 1. Sample WDS (PsS) statistical measures rounded to 4 significant digits.

Fig. 1. Sample WDS: values for ID,ED,KD and G0

Fig. 2. Sample PsS: values for P0,P1,u0,ID,ED,KD and G0
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ED, ID and KD based on the use of different types of Least Square Non-Linear
Regression and Neural Networks (NN). Using the WDS dataset, an attempt to
improve the quality of these results was carried out by using Support Vector
Regression (SVR). Support Vector Machines [20] are based on the statistical
learning theory from Vapnik and are specially suited for classification. However,
there are also algorithms based in the same approach for regression problems
known as Support Vector Regression. The performed experiments with SVRs
were carried out using LIBSVM [21] for Matlab. Two different kinds of SVR al-
gorithms: ε-SVR, from Vapnik [22] and ν-SVR from Schölkopf [23] were applied,
which differ in the fact that ν-SVR uses an extra parameter ν ∈ (0, 1] to con-
trol the number of support vectors. For these experiments a search for the best
results was made in the C, ε (ν) space and so different values for the parameter
C (cost) and for parameters ε and ν were used.

The best results obtained with both ε-SVR and ν-SVR with the radial basis
function kernel reveal slightly better results when compared with those obtained
with the fitting neural network and better than those obtained with the other
MLP’s and the traditional regression algorithms.

In order to have an easier reading of the present paper, a summary of the
results achieved in [8] is presented in Tables 2 and 3.

Type
Hidden
neurons

Median/Mean(std)

Non-Linear
Regression

G0 = αED (ID)β - 0.28/0.34(0.29)

G0 = ED + ED e(α+ βID + γ log(KD)) - 0.21/0.29(0.28)

Quasinewton 50 0.20/0.38(0.72)
Conj.Grad. 100 0.19/0.30(0.38)

Neural
Networks

SCG 40 0.20/0.28(0.33)
MLP-Bayesian 20 0.20/0.29(0.30)

RBF 200 0.20/0.31(0.39)
Fitting 60 0.17/0.27(0.29)

Table 2. Sample WDS: Relative Error Results (Median/Mean(std)) obtained with

G̃0 = f(ID, ED,KD).[8]

Type Cost/ε(ν) Median/Mean(std)

ε-SVR 200/0.1 0.16/0.27(0.43)
ν-SVR 200/0.8 0.16/0.27(0.41)

Table 3. Sample WDS: Relative Error Results (Median/Mean(std)) obtained with

Support Vector Regression G̃0 = f(ID, ED,KD).

Despite all the work reviewed in Section 2 it hasn’t been already tried to
model G0 as a straightforward function of the DMT basic parameters P0, P1
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and P2. In addition, the promising results showed in Table 3 led the authors to
go further and to try that approach. However, there are some difficulties in the
interpretation of P2 values, since it can represent very distinctive situations in
different type of soils, as explained below:

– In sands the parameter can be roughly compared to the pore pressure re-
sulting from the hydrostatic level, in equilibrium. In fact the pressure on the
membrane is that of the water in the pores.

– In clays P2 parameter represents a mixed of both water and soil pressures,
and thus it should only be used qualitatively, as sustained by Marchetti [16].

– Furthermore, in soils with intermediate behaviours (silts, sandy clays or
clayey sands) the problem is even worse than with clays creating some im-
portant problem for a reasonable interpretation [7].

As a consequence of these, it was considered more appropriate to work with
equilibrium pore-pressures (u0), calculated from the position of water level ex-
ternally obtained, instead of P2. Thus, in the next experiments the objective
is to model G0 as function of P0, P1 and u0 parameters, avoiding the need for
special interpretations, which turns to be much more efficient to include in math-
ematical operations. With the characterization of the PsS data set presented on
Table 1 and Figure 2 it can be seen that this subset is comparable to the WDS
in terms of variables distribution and limits in exception of the G0 parameter
where the available data is restricted to the range 12-110, where in WDS it goes
6-530. This is relevant, as the conclusions about this experiments must take this
into account.

The straight application of the expressions calculated in [7] for the regression
applied to this subset returned the relative error parameters shown in Table 4,
and the recalculation of the regression constants and subsequent relative error
evaluation lead to the results shown in Table 5. Comparing the variability of
these results with the ones showed in Table 2 highlights the advantage of using
cross validation in experiments.

Concerning the G0 prediction using the (P0,P1,u0) parameters, the schema
was similar to the one described in the previous subsection for the intermediate
parameters. A traditional regression approach was first used and then several
Neural Network experiments were made. Two sets of input parameters were
used: one using P0, P1 and u0 and other neglecting u0.

Regarding traditional regression, the least squares method returned some
interesting results that can be seen on Table 6. Those results are the best when
considering all the possible combinations of the transformations exponential,
square root, logarithmic and square to the dependent and independent variables.

It should be noted that in Table 6, δ ≈ 0.448, which combined with the
range of values for u0 (roughly say, [0,0.2] ) results on a multiplicative effect in

the prediction G̃0 - that is eδu0 × f(P0, P1) - of approximately [1,1.1]. Thus, it
was expectable that the introduction of the u0 parameter didn’t bring too much
improvement to our previous result as it happened.

For all the experiments using NN’s or SVR’s the 10 fold cross validation
method with 20 repetitions was used, since this is the most common and widely
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Type Median/Mean(std)

Non-Linear
Regression

G0 = αED (ID)β 0.32/0.55(0.63)

G0 = ED + ED e(α+ βID + γ log(KD)) 0.34/0.50(0.49)

Table 4. Subset PsS: Relative Error Results (Median/Mean(std)) obtained with non-

linear regression G̃0 = f(ID, ED,KD) using the (α, β, γ) calculated in Table 2.

Type Median/Mean(std)

Non-Linear
Regression

G0 = αED (ID)β 0.26/0.34(0.33)

G0 = ED + ED e(α+ βID + γ log(KD)) 0.14/0.18(0.16)

Table 5. Subset PsS: Relative Error Results (Median/Mean(std)) obtained with non-

linear regression G̃0 = f(ID, ED,KD) revaluating the (α, β, γ) parameters.

Type Median/Mean(std)

Non-Linear
Regression

G0 = α eβP0 + γP1 0.22/0.28(0.23)

G0 = α eβP0 + γ
√

P1 + δu0 0.22/0.28(0.23)

Table 6. Subset PsS: Relative Error Results (Median/Mean(std)) obtained with non-

linear regression G̃0 = f(P0, P1) and G̃0 = f(P0, P1, u0).

accepted methodology to guarantee a good neural network generalization [19].
For each NN a huge set of experiments was performed, varying the involved
parameters such as the number of neurons in the MLP hidden layer, the number
of epochs or the minimum error for stopping criteria. The results here presented
are therefore the best ones for each regression algorithm and represent the mean
of the 10×20 performed tests for each best configuration. It is also important to
stress the fact that, when compared to traditional approaches where all the data
is used to build the model, this methodology tends to produce higher standard
deviations since in each experiment only a fraction of the available data is used
to evaluate the model. Several exploratory experiments were performed with
different kinds of MLPs and SVRs. Results from these preliminary experiments
show that the best ones were also obtained with SVRs with the radial basis
function kernel and for that reason we focus on more detailed experiments using
this combination. Results from the SVRs with radial basis function kernel are
presented in Table 7, where the u0 parameter also seem to be negligible in terms
of G0 prediction.

4 Conclusions

Figure 3 summarizes the results presented in the previous subsections and rep-
resents the quality parameters of some of the best results on the estimation of
G0 via DMT’s basic and intermediate parameters.
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Input Type Cost/ε(ν) Median/Mean(std)

(P0, P1) ε-SVR 40/0.0001 0.24/0.29(0.22)
(P0, P1) ν-SVR 20/0.9 0.25/0.31(0.25)

(P0, P1, u0) ε-SVR 40/0.0001 0.24/0.29(0.22)
(P0, P1, u0) ν-SVR 20/0.9 0.25/0.31(0.25)

Table 7. Sample PsS: Relative Error Results (Median/Mean(std)) obtained with
SVR’s.

Fig. 3. Best Results: values for median, mean and std of |G0−G̃0|
G0

This emphasizes the good results of applying Neural Networks to predict
maximum shear modulus by DMT. Based on performed experiments it is possible
to outline the following considerations:

– Neural Networks and/or SVR’s improve the state-of-the-art in terms of G0

prediction. The results show that, in general, NNs and/or SVR’s lead us to
much smaller medians, equivalent means and higher standard deviations in
respect to relative errors, when compared to traditional approaches.

– Regarding the problem characteristics the SVR approach gives, on the pre-
diction with DMT intermediate parameters, the best results considering the
median as the main quality measure as discussed earlier.

– When compared with the intermediate parameters, the results show that the
basic input parameters (P0, P1) does not improve the fitness of G0.

– In addition to the previous sentence, the inclusion of u0 as third input pa-
rameter does not seem to improve the fitness. Future work should consider
other auxiliar data, mainly measured depth, depth of water level, and/or P2.

– The available unbalanced data, regardingG0 distribution, suggests that more
tests should be made using G0 values of higher magnitude (>110).
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