
On the Use of a Clustering Validation Measure for Feature Selection in High
Dimensional Data Sets

Jorge M. Santos
ISEP - Instituto Superior de Engenharia do Porto

INEB - Instituto de Engenharia Bioḿedica, Porto, Portugal
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Abstract—Feature selection is a very important preprocess-
ing step in data classification. By applying it we are able
to reduce the dimensionality of the problem by removing
redundant or irrelevant data. High dimensional data sets are
becoming usual nowadays specially in bio-informatics, biology,
signal processing or text classification, increasing the need for
efficient feature selection methods. In this paper we study the
applicability of a clustering validation measure, the Adjusted
Rand Index (ARI), for this task comparing it with other
methods based on statistical tests and on ROC curve.
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I. I NTRODUCTION

Feature selection or variable selection is the technique
of selecting a subset of relevant feature for building robust
learning. Feature selection is a very complex task. Several
methods have been proposed to perform this task and to
overcome the inherent difficulties in the classification of
high dimensional data sets. These methods are usually
divided in three groups:filters, wrappers and embedded
ones. Filters are preprocessing steps, separated from the
learning and classification process. They assign a score to
each feature by computing the correlation or the mutual
information between features or between features and the
given labels. Single feature performance is also included
in filters. In wrappers methods, like simulated annealing or
genetic algorithms, features are grouped according to their
contribution to the prediction performance of the learning
machine. Wrappers are also separated from the learning
and classification process. On the contrary, in embedded
methods, the feature selection process isembeddedin the
learning process as part of the training phase. Decision trees
are examples of embedded methods. A survey of all these
methods can be found in [1].

The methods used in this work are included in the filters
group since we apply them before the learning process. We
will use a clustering validation measure, the Adjusted Rand
Index, as a measure of correlation between each feature and
the desired targets and compare it with feature selection

performed with ROC curve and some statistical tests: Mann-
Whitney-Wilcoxon (MWW), t-test and Kruskal-Wallis.

The Adjusted Rand Index (ARI) is a measure of agree-
ment between partitions. Since the target data is partitioned
by means of the labeling we can also use ARI to perform
feature selection if we split each feature in non-overlapping
equal intervals and compare the partition derived from the
split with the one given by the targets. By doing this we
are evaluating each feature’s discriminant power and we can
rank the features according to the computed ARI value. We
can then select the most discriminant features to apply in
our classification algorithm.

This work is organized as follows: the next section
introduces the Adjusted Rand Index; Section 3 explains
how we intend to use ARI for feature selection; Section 4
presents several experiments that show the applicability of
the proposed measure when compared to the other methods
with results detailed in Section 5. In the final section we
draw some conclusions about the paper.

II. T HE ADJUSTEDRAND INDEX

The Adjusted Rand Index is a performance index for
cluster evaluation. There are several indices to perform this
task. These indices are measures of correspondence between
two partitions of the same data and are based on how pairs
of objects are classified in a contingency table.

Let us consider a set ofn objectsS = {O1, O2, ..., On}
and suppose thatU = {u1, u2, ..., uR} and V =
{v1, v2, ..., vC} represent two different partitions of the
objects inS such that∪R

i=1ui = S = ∪C
j=1vj andui∩ui′ =

∅ = vj ∩vj′ for 1 ≤ i 6= i′ ≤ R and1 ≤ j 6= j′ ≤ C. Given
two partitions,U andV , with R andC subsets, respectively,
the contingency Table I can be formed to indicate group
overlap betweenU andV .

In Table I, a generic entry,trc, represents the number of
objects that were classified in therth subset of partitionR
and in thecth subset of partitionC. From the total number
of possible combinations of pairs

(

n

2

)

from a given set we
can represent the results in four different types of pairs:



Table I
THE CONTINGENCY TABLE FOR COMPARING PARTITIONS U AND V .

Partition V

Group v1 v2 · · · vC Total

u1 t11 t12 · · · t1C t1.

U u2 t21 t22 · · · t2C t2.

...
...

...
. . .

...
...

uR tR1 tR2 · · · tRC tR.

Total t.1 t.2 · · · t.C t.. = n

Table II
SIMPLIFIED 2 × 2 CONTINGENCY TABLE FOR COMPARING PARTITIONS

U AND V .

Partition V

U
Pair in Pair in

same group different groups

Pair in same group a b

Pair in different groups c d

a - objects in a pair are placed in the same group inU and
in the same group inV ;
b - objects in a pair are placed in the same group inU and
in different groups inV ;
c - objects in a pair are placed in the same group inV and
in different groups inU and;
d - objects in a pair are placed in different groups inU and
in different groups inV .

This leads to an alternative representation of Table I as a
2 × 2 contingency table (Table II) based ona, b, c, andd.

The values of the four cells in Table II can be computed
using the values of Table I by:

a =

R
∑

r=1

C
∑

c=1

(

trc

2

)

=

(

R
∑

r=1

C
∑

c=1

t2rc − n

)

/2 (1)

b =
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(

tr.
2

)

− a =
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t2r. −
R
∑

r=1

C
∑

c=1

t2rc
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/2 (2)

c =
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∑
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(

t.c
2

)
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d =

(
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2
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− a − b − c =

(
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2
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2
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2
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/2

(4)

wheretrc represents each element of theR × C matrix of
Table I.

Using these four values we can calculate several different
performance indices that we will present in the following
paragraphs.

The Rand Index (RI), proposed by Rand [3], together with
the well known Jaccard Index [2], were, and still are, popular
indeces and probably the most used for cluster validation.
We can easily compute the Rand Index between partitions
U andV by:

RI(U,V ) =
a + d

a + b + c + d
(5)

and it basically weights those objects that were classified
together and apart in bothU and V . There are some well
known problems with RI: the first as to do with the fact
that the expected value of the RI of two random partitions
does not take a constant value (say zero); the other is
that the Rand statistic approaches its upper limit of unity
as the number of clusters increases. To overcame these
limitations some researchers have created several different
measures. Examples are the Fowlkes-Mallows [4] Index
(a/
√

(a + b)(a + c)) or the Adjusted Rand Index (ARI)
proposed by Hubert and Arabie [5] as an improvement of
RI. In fact ARI became one of the most successful cluster
validation indices and in [6] it is recommended as the index
of choice for measuring agreement between two partitions
in clustering analysis with different numbers of clusters.We
can compute the ARI index between partitionsU and V ,
ARI(U,V ), by

(

n
2

)

(a + d) − [(a + b)(a + c) + (c + d)(b + d)]
(

n
2

)2
− [(a + b)(a + c) + (c + d)(b + d)]

(6)

or
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(7)
with expected value zero and maximum value 1.

III. U SING ARI FOR FEATURE SELECTION

In classification problems the training data is partitioned
by means of the given labels. We can also, following some
criteria that we will explain later, make a partition for each
feature and compare it with the partition given by the labels.
Since ARI gives a measure of agreement between partitions
we will use it to compare the partition given by the labels and
the partition of each feature. By making these comparisons
we can produce a rank of features.

We will start by explaining how to partition each feature.
We will rank the feature values by splitting them in non-
overlapping equal intervals (categories) that could be for
example as many as the number of classes. These intervals
will define the partition to use, together with the class



partition, in the computation of ARI index. Let us consider
a simple example just to clarify this concept. Table III
represents the values of two features (normalized in the
interval [0, 1]) from a given data set with12 elements with
the respective class labels.

Table III
A SIMPLE EXAMPLE TO ILLUSTRATE THE USE OFARI FOR FEATURE

SELECTION

Element a b c d e f g h i j k l

Class label 1 1 1 1 2 2 2 2 3 3 3 3

feat1 0 0.3 0.1 0.5 0.2 0.4 0.7 0.5 0.9 1 0.7 0.4

feat2 1 0.8 0.9 0.7 0.2 0.4 0.4 0.5 0 0.1 0.1 0.2

We start by making partitions for both features and
for the class labels. The partition defined by the class
labels is Pc = {{a, b, c, d}, {e, f, g, h}, {i, j, k, l}};
the partitions for feature 1 will be Pfeat1 =
{{a, b, c, e}, {d, f, h, l}, {g, i, j, k}}; and for feature 2
will be Pfeat2 = {{e, i, j, k, l}, {f, g, h}, {a, b, c, d}}. In
this case we choose to split the feature values in 3 non-
overlapping intervals but, as we will see later, we can choose
different number of intervals. Using formulas 6 or 7 we
then calculate the ARI values between each feature partition
and Pc thus obtainingARI(Pc,Pfeat1) and ARI(Pc,Pfeat2).
We will then rank the features according to their ARI value.
In the presented caseARI(Pc,Pfeat2) > ARI(Pc,Pfeat1)

therefore the feature with highest ARI is feat2 and so is the
most discriminant feature.

ARI will give us the feature’s discriminant power. Having
ranked the existent features we select a certain number
of the most discriminant ones to use in our classification
algorithm. This approach is suitable for data sets with an
extremely large number of features like those related with
gene expression or text classification.

IV. EXPERIMENTS

As we mentioned earlier we will compare the selection
of features performed by the application of ARI index and
by some statistical tests. These univariate feature selection
algorithms include feature ranking as principal selection
mechanism because of its simplicity, easy implementation
and good empirical success. These statistical methods esti-
mate a score∆j for every distinct featurej on the data set
and apply a selection rule based on the magnitude of∆j .
An example of such a decision rule, as we stated earlier, is
to rank the scores∆j from largest-to-smallest and select the
top-rankedk features.

In the estimation of the∆j score we used the ARI and
compare it with the t-test, the Mann-Whitney-Wilcoxon test
[7] and the Receiver Operating Characteristic (ROC) curve
procedure [8], for two-class problems and the Kruskall-
Wallis test [7] for problems with more than two classes. For

ROC curve procedure the∆j score is given by the area under
the curve (AUC). The AUC is an important measure for the
quality of separation. A high area under the ROC suggests
good discriminative power of the model. In the cases of t,
Mann-Whitney-Wilcoxon and Kruskall-Wallis tests the∆j

was assessed by the p-value. Two independent sample t-
test is a parametric procedure for comparing means of two
independent populations. This test assumes that populations
are normally distributed. If this is not true, the Central Limit
Theorem can be used to justify that the sample sizes are large
enough. Mann-Whitney-Wilcoxon test is a nonparametric
test that does not depend on the Gaussian assumption for
the populations and is used for determining whether there
is a difference between two populations. The Kruskal-Wallis
test, a simple extension of the Mann-Whitney-Wilcoxon test,
is applied in cases of three or more populations. Note that
the False Discovery Rate that controls the number of false
positive features [9] was not applied here because we want
to select a fixed number of features.

We applied these algorithms for feature selection in five
data sets summarized in Table IV. Data sets Arcene, Dexter
and Madelon can be found in the UCI repository [10].
Arcene is a Mass-spectrometric cancer data set, Dexter is
a text classification problem and Madelon is an artificial
data set. Data set Leukemia, a Microarray Gene Expression
Data related with leukemia cancer, can be found in [11]
and NCI60, also a cancer Microarray data, can be found
in [12]. The data sets differ a lot among them specially in
what concerns the number of features and the number of
elements but the common characteristic is the large number
of features.

Table IV
THE DATA SETS USED IN THE EXPERIMENTS.

Data set
number of number of number of number of
elements features classes elem. per class

Arcene 100 10000 2 44;56
Dexter 300 7751 2 150;150
Leukemia 72 7129 2 47;25
Madelon 2000 500 2 1000;1000
NCI60 64 6830 12 7;5;7;2;6;2;8;9;6;2;9;1

For the ARI and ROC feature selection methods we
ranked the∆j scores from largest-to-smallest and select
the top-rankedk features. For the other methods, being
the ∆j assessed by the p-value, we ranked the∆j scores
from smallest-to-largest and selected also the top rankedk
features. Actually we choosek ∈ {2, 5, 10, 20} because
we were interested in trying to obtain good results with
a very small number of features. When applying ARI we
performed several exploratory experiments to determine the
ideal number of intervals (categories) to split each feature
and we find better results when choosing values for the
number of intervals around the double of the number of



Table V
THE RANGE OF THE NUMBER OF NEURONS OF THEMLP’ S USED IN THE

EXPERIMENTS.

Data sets Two hidden layers One hidden layer

1st 2nd 2 and 5 10 and 20
features features

Arcene 10-50 10-20

2-10 2-20
Dexter 10-80 10-40
Leukemia 10-80 10-40
Madelon 20-60 10-40
NCI60 10-80 10-40

classes. We can say also that the results are not significantly
modified by different choices of the number of intervals.
Therefore we choose 4 and 5 intervals for the two-class
problems and 12, 24 and 30 intervals for the 12-class
problem.

Since the purpose of this work is to compare the feature
selection methods we thought it was better not to use
different classification methods because we could incur in
a unfair comparison by evaluating the results given by
different methods and lose the main goal. For this reason
we choose only neural networks (MLP’s) as classification
algorithms in all problems.

The architectures of the MLP’s were the following: as
many inputs as the number of features, one or two hidden
layers and one output layer for the two-class problems and
as many outputs as the number of classes for the multi-
class problem. We performed experiments with different
configuration: different number of hidden neurons in a given
interval. This interval was chosen in order to assure not too
complex network with acceptable generalization. For that
purpose we used some criteria as guidelines and performed
some preliminary experiments. As criteria we took into
account the well-known rule of thumbnh = w/ε (based
on a formula given in [13]), wherenh is the number of
hidden neurons,w the number of weights andε the expected
error rate. Other MLP characteristics were chosen following
[14]: all neurons use the hyperbolic tangent as activation
function; as risk functional we used the MSE and as learning
algorithm the backpropagation of the errors. The inputs were
all pre-processed in order to standardize them to zero mean
and unit variance.

Several different configurations of the MLP’s were used
in the performed experiments. When using all the features
of the data sets there is a need for more complex MLP’s
and therefore we choose to use two hidden layers with dif-
ferent number of neurons. Experiments with sets of selected
features (2, 5, 10 and 20) were performed with a single
layer with several different number of hidden neurons. The
number of neurons for the experiments is shown on Table
V.

In all experiments we used the 5-fold cross validation
method. In this method in each run the data set is randomly

split in five groups being each one, in five different stages,
used for testing and the other four for training. Each exper-
iment consisted of 20 runs of the algorithm. After the 20
runs the mean and standard deviation of the classification
error were computed.

V. RESULTS

In Table VI we show the best classification error mean
and standard deviation (in brackets) of the performed ex-
periments with the different feature selection methods with
two-class and multi-class problems. We do not show, due to
lack of space, the number of hidden neurons corresponding
to these best results (in our opinion this is not an important
subject of analysis in this work). However we must stress
that the range of the number of neurons used in the experi-
ments is wide enough to guaranty a fair comparison between
the methods.

We present in the first row of results of Table VI the
classification errors for the performed experiments using all
the features.

The first point to notice is that the results clearly show that
feature selection is a very important pre-processing step in
high dimensional data sets. By performing feature selection
and using a selected subset of features we were able to obtain
better results than by using all features. This is mainly due
to the fact that high dimensional data sets, with hundreds or
thousands of features, contain high degree of irrelevant and
redundant information which may degrade the performance
of the neural network. This fact is more visible in data sets
Leukemia and Madelon.

The second interesting point is that the feature selection
based on ARI was able to achieve in overall terms similar
results than those obtained by the other more common
methods. Actually, in three data sets the results for ARI are
the best ones.

Results also show that, with fewer exceptions, the classi-
fication errors becomes larger as we use less features. In fact
the best results are all with 20 (one with 10) features. This
could eventually mean that we have choose a very small
number of features and probably we should make some
experiments with more features to try to get even better
results. However, the purpose of this work was to evaluate
the applicability of ARI for feature selection and not to try
to obtain the best classification results or even to beat other
classification algorithms. This is the reasons for just having
used MLP’s in our experiments.

Data set NCI60 was the only where Kruskal method
achieved better results. The results for methods Mann-
Whitney-Wilcoxon andt-test are very similar. The com-
parison between methods allows us to state, based on the
performed experiments, that ROC presents the worst results
and ARI the best ones.

Feature selection based on ARI also have the advantage
that one can select the number of intervals (categories) in



Table VI
CLASSIFICATION ERRORS(MEAN AND STANDARD DEVIATIONS OF THE 20 RUNS) FOR THE PERFORMED EXPERIMENTS. THE BEST RESULTS FOR EACH

DATA SET ARE IN BOLD .

Method Selected Data setsfeatures

Arcene Dexter Leukemia Madelon NCI

All 18.20 (2.82) 14.17 (1.96) 5.56 (2.07) 43.96 (0.80) 51.56 (5.05)

ROC

2 24.30(2.00) 30.77 (1.36) 6.25 (0.73) 38.08 (0.16)
5 25.80(3.08) 19.37 (1.06) 7.36 (1.86) 33.34 (0.41)
10 27.40(1.84) 15.77 (1.10) 8.61 (1.94) 35.30 (0.79)
20 23.10(1.73) 15.87 (0.80) 6.39 (1.49) 38.37 (0.94)

MWW

2 34.00(4.00) 17.73 (0.78) 5.83 (0.59) 37.91 (0.22)
5 34.00(3.40) 20.73 (1.20) 4.03 (0.69) 31.92 (0.66)
10 13.60(2.32) 13.07 (0.93) 4.03 (0.79) 17.02 (0.60)
20 14.40 (2.88) 12.03 (1.18) 3.89 (0.59) 18.91 (0.65)

t-test

2 32.10(2.02) 27.03 (0.48) 8.86 (0.90) 37.97 (0.28)
5 31.80(2.44) 27.40 (0.52) 5.71 (1.35) 30.05 (0.56)
10 31.20(2.25) 16.53 (1.08) 5.57 (1.71) 17.02 (0.60)
20 17.60(2.88) 12.33 (1.05) 6.86 (1.62) 18.91 (0.65)

Kruskal

2 69.53 (4.18)
5 52.19 (5.90)
10 50.47 (5.76)
20 40.16 (6.59)

ARI-4

2 24.90(1.97) 25.87 (1.17) 1.86 (0.96) 38.02 (0.23)
5 21.30(2.71) 17.50 (0.76) 1.71 (1.62) 31.48 (0.49)
10 22.20(2.94) 13.50 (0.74) 4.57 (1.31) 16.81 (0.33)
20 22.10(2.23) 11.53 (1.25) 3.14 (0.90) 19.65 (0.73)

ARI-5

2 26.10(1.10) 25.53 (0.57) 7.57 (2.13) 37.92 (0.22)
5 25.60(1.58) 20.60 (0.78) 4.43 (1.05) 31.92 (0.33)
10 20.30(2.26) 13.93 (0.93) 3.43 (1.00) 17.33 (0.87)
20 20.50(3.66) 10.87 (1.12) 1.57 (1.42) 19.69 (0.66)

ARI-12

2 71.56 (5.60)
5 65.78 (6.89)
10 64.22 (7.64)
20 53.59 (4.72)

ARI-24

2 73.75 (4.15)
5 74.84 (6.36)
10 62.81 (4.15)
20 58.13 (6.33)

ARI-30

2 71.09 (3.55)
5 77.19 (4.67)
10 72.81 (5.99)
20 62.34 (8.94)

order to try to obtain even better results. This is a subject
that we will explore in a future work.

Finally we must say that, despite the fact that our goal was
not to achieve the best results on the classification problems,
the results for Leukemia are better than those published in
[11] and other works.

VI. CONCLUSIONS

The purpose of this work was to evaluate the suitability
of ARI to perform feature selection.

We have presented the ARI index and explained how
we can use it to perform feature selection by ranking the

computed ARI for all the features with comparison to the
labeling targets. The computed ARI will give us a measure
of correlation between features and labels.

We have compared the results of the classification with
neural networks using the features selected by ARI and
other methods that also measure the correlation between the
observed data values.

Results show that ARI is a valid measure for feature
selection having obtained better results when compared to
other well known methods. We also obtained some good
results using other classification algorithms but we do not
present them here because the purpose of this work was



only to compare the feature selection task with only one
classification algorithm. We can also obtain better resultsby
choosing a larger number of features. In overall terms we
must say that the results are very promising.

Finally, we must say that we use this index in our daily
experiments not only in feature selection but also as a
measure of performance of the classification algorithms. We
encourage all researchers to include ARI as a tool in their
classification processes.
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