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Lúıs M. Silva1, Mark Embrechts2, Jorge M. Santos1,4 and J. Marques de Sá1,3
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Abstract. We investigate the capability of multilayer perceptrons using
specific risk functionals attaining the minimum probability of error (op-
timal performance) achievable by the class of mappings implemented by
the multilayer perceptron (MLP). For that purpose we have carried out
a large set of experiments using different risk functionals and datasets.
The experiments were rigorously controlled so that any performance dif-
ference could only be attributed to the different risk functional being
used. Statistical analysis was also conducted in a careful way. From the
several conclusions that can be drawn from our experimental results it
is worth to emphasize that a risk functional based on a specially tuned
exponentially weighted distance attained the best performance in a large
variety of datasets. As to the issue of attaining the minimum probability
of error we also carried out classification experiments using non-MLP
classifiers that implement complex mappings and are known to provide
the best results until this date. These experiments have provided evi-
dence that at least in many cases, by using an adequate risk functional,
it will be possible to reach the optimal performance.

1 Introduction

We consider a classification problem with a set of classes Ω = {ω} and a para-
metric machine (parameter set W = {w}) such as the multilayer perceptron
(MLP) performing a mapping Y = ϕ(X) = ϕw(X) from the input variable X
into the output variable Y . The machine is trained by some algorithm in order
to minimize a risk functional on a parameter set W = {w} of the function class
Φ = {ϕw} implemented by the classifier, attempting to approximate some tar-
get variable T . The risk (written here only for the continuous case) is often an
expected distance between T and Y ,

RΦ =
∑
Ω

P (ω)

∫
X,T

L(t, y)dF (t, x|ω) with y = ϕw(x) (1)
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where the so-called cost or loss function L(·) can be chosen in various ways.
For the popular mean square error (MSE), L(t, y) = (t − y)2 is a quadratic dis-
tance; for cross-entropy and two-class problems with Y ∈ [0, 1] and T ∈ {0, 1},
L(t, y) = t ln y + (1 − t) ln(1 − y), is a special case of the Kullback-Leibler diver-
gence; etc. Recently, a generalized exponential loss function enjoying the prop-
erty of being able to emulate the behavior of a whole family of loss functions, by
single parameter tuning, has also been proposed [1]. It is also possible to choose
the risk as a functional of the error probability density function (pdf), whenever
it exists, f(e) ≡ fE(e) with E = T − Y , particularly the Shannon’s entropy
functional,

RΦ = −

∫
E

ln f(e)dF (e), (2)

or Rényi’s entropy functional

RΦ =
1

1 − α
ln

∫
E

[f(e)]α−1dF (e). (3)

Note that E ≡ E(ϕ). This approach corresponds to the Minimum of Error En-
tropy (MEE) principle [2–4]. These are more sophisticated risk functionals in
the sense that they reflect the whole pdf of T − Y , instead of a single distance
between T and Y . The main problem in data classification is the possibility
of attaining the minimum probability of error, minW PeΦ, afforded by the ma-
chine architecture for some w∗, the so-called optimal solution. For instance, if
hypothetically a certain minW RΦ does not lead to minW PeΦ, one has to con-
clude that a risk functional is being used which fails to adequately take into
account the whole complexity available in the family set Φ. One should then
turn to another risk functional. The practical problem is that usually minW PeΦ

is unknown and some risk functionals - equivalently, some learning algorithms
may exhibit a better behavior than competing ones in some datasets and worse
behavior in other datasets. (In fact, this must necessarily happen, taking into
account the well-known results of the no-free-lunch theorems (see e.g. [5]).) In
order to acquire experimental evidence on how different risk functionals behave
in different datasets, we performed an extensive comparison of MLP classifica-
tion results involving several types of risk functionals and datasets. Since we
use the same type of classifier (MLP with the same architecture) and the same
training and test sets the only influence in the results is from the loss functions.
The experiments were conducted in a rigorously controlled way. The results were
thoroughly evaluated.

2 The Datasets

We restricted ourselves to artificial and real-world two-class datasets. As artifi-
cial datasets we used checkerboard datasets such as the one shown in Figure 1.
Checkerboard datasets are complex, controllable and unbalanced datasets. We
used two different configurations: 2×2 and 4×4 checkerboards. For each one of
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Fig. 1. An example of the 4×4 checkerboard dataset with 400 points (100 elements in
the minority class: dots). Dotted lines are for visualization purpose only.

the configurations we built three datasets with different numbers of elements
(points) but with a common characteristic: a fixed number of elements belong-
ing to the minority class. The percentage of elements of this minority class is 50,
25 and 10% of the total number of elements. In Table 1 we show the different
characteristics of the checkerboard datasets. CB2×2(200, 50) means “checker-
board 2×2 dataset with a total of 200 cases, 50% of them of the minority class”;
likewise for the other checkerboard datasets.

Table 1. The artificial checkerboard datasets.

Data set
number of number of elements
elements per class

CB2×2(200,50) 200 100-100
CB2×2(400,25) 400 300-100
CB2×2(1000,10) 1000 900-100
CB4×4(200,50) 200 100-100
CB4×4(400,25) 400 300-100
CB4×4(1000,10) 1000 900-100

We used several real-world datasets summarized in Table 2. All datasets can be
found in the UCI repository [6]. All these datasets differ a lot among them spe-
cially in what concerns the number of features and their topology. As a matter
of fact and regarding this last aspect, the Wilks’ lambda, a [0, 1]-separability
measure related to the within-class over between-class sum of squares, varies -
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as shown in Table 2 - from such a low value as 0.23 (Wdbc) indicating a quite
good separability to such a high value as 0.86 (Liver) corresponding to a large
class overlap.

Table 2. The 2-class real-world datasets.

Data set
number of number of number of Wilks’
elements features el. per class lambda

Cleveland Heart Disease 2 297 13 160-137 0.47
Diabetes 768 8 500-268 0.70
Ionosphere 351 34 225-126 0.38
Liver 345 6 200-145 0.86
Sonar 208 60 111-97 0.38
Wdbc 569 30 357-212 0.23

3 MLP Architectures

In all experiments with a given dataset we used the same MLP architectures,
with as many inputs as the number of features, one hidden layer and a single
output. The number of hidden neurons, nh, was chosen in order to assure a not
too complex network with acceptable generalization. For that purpose we used
some criteria as guidelines and performed some preliminary experiments. As
criteria we took into account the minimum number of lines needed to separate
the checkerboard classes and the well-known rule of thumb nh = w/ǫ (based on
a formula given in [7]), where w is the number of weights and the expected error
rate. The number of hidden neurons is given in Table 3. All neurons used the

Table 3. Number of hidden neurons, nh.

Data set nh Data set nh

Checkerboard 2×2 4 Ionosphere 4
Checkerboard 4×4 16 Sonar (10)* 10
Cleveland Heart Disease 2 2 Sonar (20)* 20
Diabetes 9 Liver 8
Wdbc 3

(*)Same dataset but used in two nh-different series of experiments

hyperbolic tangent as activation function. As risk functionals we used:

1. Mean square error (MSE):

RΦ =
∑
Ω

P (ω)

∫
X,T

(t − y)2dF (t, x|ω) (4)
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2. Cross-entropy (CE):

RΦ =
∑
Ω

P (ω)

∫
X,T

(t ln y + (1 − t) ln(1 − y))dF (t, x|ω) (5)

3. Generalized exponential (EXP):

RΦ =
∑
Ω

P (ω)

∫
X,T

τe(t−y)2/τdF (t, x|ω) (6)

4. Shannon’s entropy of the errors (HS):

RΦ = −

∫
E

ln f(e)dF (e) (7)

5. Quadratic Rényi’s entropy of the errors (HR2):

RΦ = − ln

∫
E

[f(e)]dF (e) (8)

All these risks depend on the family of functions Φ = {ϕw} implemented by the
MLP, where W = {w} is the set of MLP weights.

4 The Experiments

As learning algorithm we used backpropagation (BP) of the errors. The practi-
cal implementations of this algorithm for all the risk functionals are described in
the cited references. Note that for MEE the only available learning algorithm is
BP; therefore, we had to use it for a fair comparison among all risk functionals.
Regularization was performed by early stopping according to the same criterion,
as follows: for each data set 10 runs were performed in order to determine the
optimal number of epochs, Ep, (as well as the optimal smoothing parameter h
for HS and HR2) for each method. The optimal Ep (h) were chosen as those
values achieving the mean test error over the 10 runs. Initial values for h were
selected using the formula given in [8]. The inputs were all pre-processed in or-
der to standardize them to zero mean and unit variance. The support of the
output target variable was {−1, 1}. In all experiments we used the 2-fold cross
validation method. In this method in each run half of the data set is randomly
chosen for training and the other half for testing. The datasets are next used
with reverse roles (the original training set becomes the test set and vice-versa).
Each experiment consisted of 20 runs of the algorithm. For this purpose twenty
different random splits of the data sets were generated and stored. The same

twenty different random splits were used as inputs for all MLPs with different
risk functionals. This guaranteed that no differences in the results were due to
different splits of the data sets. After the 20 runs the mean and standard devi-
ation of the following performance measures were computed:
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AUC: The area in percentage under the Receiver Operating Characteristic
(ROC) curve, which measures the trade-off between sensitivity and specificity in
two-class decision tables (for details, see e.g. [9]). The higher the area the better
is the decision rule.

BCR: The balanced correct defined as 50×TN/(TN+FP)+50×TP/(FN+TP)
in percentage (T=true; F=false; P=positive; N=negative).

COR: The classification correct rate in percentage.

The first two measures are based on the resulting 2×2 decision table, consid-
ering as “abnormal” class the one with lesser cases. They are specially suitable
for unbalanced datasets, as the artificial checkerboard datasets, where an opti-
mistically high COR could arise from a too high sensitivity or specificity. AUC
and BCR give an adequate picture in those situations.

5 The Results

All results were ranked and subject to ”multiple comparison among groups”
(post-hoc one-way anova tests) statistical tests, using Tukey’s least significant
difference criterion when the test probability was less that the specified signifi-
cance level (0.05), i.e., when the test was significant (rejecting the null hypothesis
of equal means), and the more strict Tukey’s honestly significant difference crite-
rion, otherwise. Based on the statistical tests we were able to decide whether or
not a functional that performed better was indeed significantly better (at that
significance level) than others with worst performance. The results obtained for
the 2×2 and 4×4 checkerboard datasets are shown in Table 4. In all tables
average values are followed by standard deviations between parentheses. In all
the tables the best average results are in bold; the statistically significant best
are underlined. For the 2×2 checkerboard datasets the EXP and HS function-
als performed better in general than all other functionals (both in average and
variance). The sum of the ranks for the BCR performance index disclosed the
following order from best to worst: EXP, HS, HR2, CE and MSE (exaequo). For
the 4×4 checkerboard datasets the CE and EXP functionals performed better
than all other functionals. The sum of the ranks for the BCR performance index
disclosed the following order from best to worst: CE, EXP, MSE, HS and HR2
(exaequo). Table 5 shows the results for real-world datasets. These datasets are
more challenging in terms of number of features, but less challenging in terms
of class unbalance and class topology. For these datasets we chose to only look
to the COR performance index. The sum of the ranks for the COR performance
index disclosed the following order from best to worst: CE, EXP, HS, MSE, HR2.
In general, taking into account the sum of ranks for the COR performance index
for all datasets, the best functional was EXP.
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Table 4. Results for 2×2 and 4×4 checkerboard datasets. Significantly best results
underlined.

Dataset CE EXP MSE HS HR2

CB2×2(200,50)
AUC 97.58 (1.26) 97.89 (2.85) 98.41 (1.08) 84.85 (17.07) 97.13 (4.51)
BCR 91.25 (2.50) 92.94 (4.30) 92.87 (2.48) 86.96 (3.17) 92.48 (3.17)

CB2×2(400,25)
AUC 98.21 (2.34) 98.89 (1.64) 96.41 (8.30) 99.03 (1.32) 91.88 (10.82)
BCR 92.87 (2.35) 93.29 (3.61) 92.47 (4.73) 94.36 (1.80) 90.70 (5.45)

CB2×2(1000,10)
AUC 97.97 (2.77) 98.94 (2.50) 62.72 (15.92) 95.07 (7.07) 96.15 (6.22)
BCR 83.40 (3.69) 94.14 (5.16) 76.97 (6.51) 90.22 (5.66) 91.80 (4.87)

CB4×4(200,50)
AUC 85.01 (3.13) 83.89 (3.39) 80.89 (4.96) 77.32 (8.42) 74.39 (6.61)
BCR 79.40 (3.20) 78.54 (3.57) 77.94 (4.39) 73.58 (4.96) 75.59 (5.45)

CB4×4(400,25)
AUC 89.95 (1.65) 84.11 (6.21) 76.96 (6.88) 71.41 (5.56) 70.63 (6.78)
BCR 82.98 (1.78) 80.21 (3.05) 76.56 (3.96) 70.93 (4.03) 71.20 (3.69)

CB4×4(1000,10)
AUC 91.28 (3.06) 89.72 (4.13) 70.94 (5.37) 68.15 (3.23) 75.44 (5.45)
BCR 80.49 (1.98) 81.47 (3.64) 70.77 (3.63) 67.98 (3.95) 73.04 (2.71)

Table 5. Results for real-world datasets. Significantly best results underlined.

Dataset CE EXP MSE HS HR2

Clev. Heart Dis. 2
COR 83.33 (1.07) 81.72 (1.29) 82.42 (1.08) 82.72 (1.11) 81.77 (1.81)

Diabetes
COR 76.82 (0.77) 76.76 (0.79) 76.58 (0.88) 76.66 (0.85) 75.84 (0.78)

Ionosphere
COR 88.04 (1.46) 88.37 (1.88) 87.81 (1.21) 87.71 (1.37) 88.50 (1.33)

Liver
COR 69.04 (2.01) 69.80 (1.27) 68.52 (1.97) 69.08 (1.86) 70.32 (1.54)

Sonar (10)
COR 77.93 (2.86) 78.75 (2.84) 77.91 (2.96) 77.76 (2.57) 75.50 (4.35)

Sonar (20)
COR 78.70 (2.60) 78.82 (2.92) 78.82 (2.51) 79.18 (2.50) 77.43 (3.01)

Wdbc
COR 97.44 (0.55) 97.21 (0.68) 97.39 (0.67) 97.36 (0.66) 96.89 (0.42)
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6 How Far from Optimality

We have of course no way to know the minW PeΦ value for the real-world
datasets. However, we may find it instructive to compare the MLP results with
the best results achievable by a battery of more sophisticated classifiers that do
not depend on a stochastic iterative process as BP. For that purpose the same
datasets were submitted to the following classifying algorithms:

1. PLS - Partial Least Squares algorithm described in [10, 11] with five latent
variables.

2. K-PLS - Kernel Partial Least Squares algorithm described in [10, 11] with
five latent variables.

3. LS-SVM - Least Squares Support Vector Machine algorithm, described in
[12–14].

4. SVMR - The classical Support Vector Machine algorithm applied in regres-
sion mode, described in [15–17].

5. SVMc - The classical Support Vector Machine algorithm, described in [15–
17].

For the K-PLS and SVM algorithms the Gaussian kernel was used. Table 6
allows comparing the best MLP BCR result with the best BCR result obtained
with the above algorithms (table header “Other”) for the checkerboard datasets
(with the algorithm number between brackets). Table 7 does the same for the
real-world datasets and for COR.

Table 6. MLP versus “Other” (checkerboard datasets). Significantly best results un-
derlined.

Dataset MLP Other

CB2×2(200,50) 92.94 (4.30) 92.43 (2.22) (2)
CB2×2(400,25) 94.36 (1.80) 92.44 (1.88) (2)
CB2×2(1000,10) 94.14 (5.16) 92.55 (2.42) (5)
CB4×4(200,50) 79.40 (3.20) 83.31 (3.02) (4)
CB4×4(400,25) 82.98 (1.78) 85.24 (1.71) (2)
CB4×4(1000,10) 81.47 (3.64) 82.89 (2.64) (3)

7 Conclusions

In the checkerboard experiments the EXP and CE functionals were the ones
with better achievement, with high values of AUC and BCR even in presence of
severe data unbalance. The HS functional performed very well in the 2×2 cases
but poorly in the 4×4. The best functionals for the real-world datasets were CE
and EXP. HS also behaved quite well achieving in general better performance
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Table 7. MLP versus “Other” (real-world datasets). Significantly best results under-
lined.

Dataset MLP Other

Clev. Heart Dis. 2 83.33 (1.06) 83.31 (0.97) (5)
Diabetes 76.82 (0.77) 76.97 (0.87) (1)
Ionosphere 88.50 (1.33) 95.00 (0.62) (3)
Liver 70.32 (1.54) 70.84 (1.63) (3)
Sonar (10) 78.75 (2.84) 85.07 (1.93) (3)
Sonar (20) 79.18 (2.50) 85.07 (1.93) (3)
Wdbc 97.44 (0.55) 97.28 (0.45) (3)

than MSE. The bottom line conclusions drawn from our experiments are as fol-
lows: EXP is a very performing functional in a large variety of datasets, which
can be explained for its capability of emulating a large class of functionals [1];
EXP, CE and HS seem definitely well performing algorithms only superseded in
rare cases by MSE or HR2; the entropic functionals have sometimes a remarkable
performance (e.g., for CB2×2(400,25), Ionosphere, Liver, Sonar20), although the
characterization of such situations is for now unclear. When comparing the best
classification results attained with MLPs with those attained with (generally
considered) more sophisticated algorithms we conclude from our experiments
that often MLPs will compete and outperform those ones. This may come as a
surprise for those who perhaps thought that MLPs was an outdated approach.
On the other hand, if we regard the best performance obtained as a sort of upper
bound of the unknown minW PeΦ, then our results provide some evidence that
an MLP with a suitable risk functional will often be able to reach minW PeΦ.
(We say “upper bound” because the non-MLP algorithms correspond to more
complex Φ-function families.) The suitability of algorithms to datasets is a tricky
subject, given the many factors that come into play and the many points of view
one may have on the matter. As to the former one may for instance ask whether
or not it is fair to compare all algorithms with the same architecture and fea-
tures; it may happen that one algorithm will have better performance in more
complex architectures than other competing ones, or that it will cope better
with redundant features than competing ones. As to the latter, one could con-
sider being interested in looking to other performance indexes than the ones we
have used. Nevertheless, the suitability of algorithms to datasets is an interest-
ing and useful subject and a central topic in metalearning issues. The existing
evaluation and comparison studies carried out with care and with a statistically
sound background are scarce. One of the reasons of such scarcity is also that
the experiments involved are much time consuming and demand a variety of
resources that are not often available. The present paper is just one contribution
to this topic that we intend to widen in the future.
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