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Abstract. The Adjusted Rand Index (ARI) is frequently used in clus-
ter validation since it is a measure of agreement between two partitions:
one given by the clustering process and the other defined by external
criteria. In this paper we investigate the usability of this clustering val-
idation measure in supervised classification problems by two different
approaches: as a performance measure and in feature selection. Since
ARI measures the relation between pairs of dataset elements not using
information from classes (labels) it can be used to detect problems with
the classification algorithm specially when combined with conventional
performance measures. Instead, if we use the class information, we can
apply ARI also to perform feature selection. We present the results of
several experiments where we have applied ARI both as a performance
measure and for feature selection showing the validity of this index for
the given tasks.

1 Introduction

One of the main difficulties in classification problems consists on the correct eval-
uation of the classifier performance. This is usually done by applying a common
performance measure like the Mean Squared Error (MSE) or the Classification
Correct Rate. Other measures like AUC (area in percentage under the Receiver
Operating Characteristic (ROC) curve), Sensitivity and Specificity, are also used
specially for two class problems like those involving medical applications. All
these measures compare the labeled outcome of the supervised classification al-
gorithm with the known labeled targets. By doing this they evaluate how good
the algorithm has labeled the input data according to the required target labels.
This can lead to poor results derived only by the fact that the output labels could
be switched even if the classes are well identified. In these cases we deemed use-
ful the introduction of a measure that can evaluate how well the algorithm split
the input data in different classes by looking at the relation between elements of
each class and not to the given labels. This is the main reason for our proposal
of using a clustering validation measure in supervised classification problems.

Usually, as we will show on the experiments, the ARI performs in a similar
way as other common measures. Lower values for bad classification results and
higher values for good classification results. We advise to include ARI in the set of
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performance measures usually used on the evaluation of supervised classification
algorithms.

Since ARI is a measure of agreement between partitions and the target data
is partitioned by means of the labeling we can also use ARI to perform feature
selection if we split each feature in non-overlapping equal intervals and compare
the partition derived from the split with the one given by the targets. By doing
this we are evaluating each feature’s discriminant power and we can rank the
features according to the computed ARI value. We can then select the most
discriminant features to apply in our classification algorithm.

This work is organized as follows: the next section introduces the Adjusted
Rand Index; Section 3 explains how we intend to use ARI as a performance
measure for supervised classification problems and for feature selection; Section 4
presents several experiments that show the applicability of the proposed measure
with results detailed in Section 5. In the final section we draw some conclusions
about the paper.

2 The Adjusted Rand Index

There are several performance indices for cluster evaluation. Indices are measures
of correspondence between two partitions of the same data and are based on how
pairs of objects are classified in a contingency table.

Consider a set of n objects S = {O1, O2, ..., On} and suppose that U =
{u1, u2, ..., uR} and V = {v1, v2, ..., vC} represent two different partitions of the
objects in S such that ∪R

i=1ui = S = ∪C
j=1vj and ui ∩ ui′ = ∅ = vj ∩ vj′ for

1 ≤ i 6= i′ ≤ R and 1 ≤ j 6= j′ ≤ C. Given two partitions, U and V , with R
and C subsets, respectively, the contingency Table 1 can be formed to indicate
group overlap between U and V .

Table 1. Contingency Table for Comparing Partitions U and V .

Partition V

Group v1 v2 · · · vC Total

u1 t11 t12 · · · t1C t1.

U u2 t21 t22 · · · t2C t2.

...
...

...
. . .

...
...

uR tR1 tR2 · · · tRC tR.

Total t.1 t.2 · · · t.C t.. = n

In Table 1, a generic entry, trc, represents the number of objects that were
classified in the rth subset of partition R and in the cth subset of partition C.
From the total number of possible combinations of pairs

(
n
2

)
from a given set we

can represent the results in four different types of pairs:
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a - objects in a pair are placed in the same group in U and in the same group
in V ;
b - objects in a pair are placed in the same group in U and in different groups
in V ;
c - objects in a pair are placed in the same group in V and in different groups
in U and;
d - objects in a pair are placed in different groups in U and in different groups
in V .

This leads to an alternative representation of Table 1 as a 2× 2 contingency
table (Table 2) based on a, b, c, and d.

Table 2. Simplified 2× 2 Contingency Table for Comparing Partitions U and V .

Partition V

U
Pair in Pair in

same group different groups

Pair in same group a b
Pair in different groups c d

The values of the four cells in Table 2 can be calculated using the values of
Table 1 by:

a =
R∑

r=1

C∑
c=1

(
trc

2

)
=

(
R∑

r=1

C∑
c=1

t2rc − n

)
/2 (1)

b =
R∑

r=1

(
tr.

2

)
− a =

(
R∑

r=1

t2r. −
R∑

r=1

C∑
c=1

t2rc

)
/2 (2)

c =
C∑

c=1

(
t.c
2

)
− a =

(
C∑

c=1

t2.c −
R∑

r=1

C∑
c=1

t2rc

)
/2 (3)

d =
(

n

2

)
− a− b− c =

(
n

2

)
−

R∑
r=1

(
tr.

2

)
−

C∑
c=1

(
t.c
2

)
+ a

=

(
R∑

r=1

C∑
c=1

t2rc + n2 −
R∑

r=1

t2r. −
C∑

c=1

t2.c

)
/2

(4)

where trc represents each element of the R× C matrix of Table 1.
Using these four values we are able to compute several performance indices

that we will present in the following paragraphs.
Together with the well known Jaccard Index [1], the Rand Index (RI), pro-

posed by Rand [2], was, and still is, a popular index and probably the most used
for cluster validation. Rand Index can be easily computed by:

RI =
a + d

a + b + c + d
(5)
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and it basically weights those objects that were classified together and apart
in both U and V . There are some known problems with RI such as the fact
that the expected value of the RI of two random partitions does not take a
constant value (say zero) or that the Rand statistic approaches its upper limit
of unity as the number of clusters increases. With the intention to overcame
these limitations researchers have created several different measures. Examples
are the Fowlkes-Mallows [3] Index (a/

√
(a + b)(a + c)) or the Adjusted Rand

Index (ARI) proposed by Hubert and Arabie [4] as an improvement of RI. In
fact ARI became one of the most successful cluster validation indices and in [5]
it is recommended as the index of choice for measuring agreement between two
partitions in clustering analysis with different numbers of clusters. ARI can be
computed by

ARI =

(
n
2

)
(a + d)− [(a + b)(a + c) + (c + d)(b + d)]
(
n
2

)2 − [(a + b)(a + c) + (c + d)(b + d)]
(6)

or

ARI =

(
n
2

) ∑R
r=1

∑C
c=1

(
trc

2

)−
[∑R

r=1

(
tr.

2

) ∑C
c=1

(
t.c

2

)]

1
2

(
n
2

) [∑R
r=1

(
tr.

2

)
+

∑C
c=1

(
t.c

2

)]−
[∑R

r=1

(
tr.

2

) ∑C
c=1

(
t.c

2

)] (7)

with expected value zero and maximum value 1.

3 Using ARI as a Performance Measure and for Feature
Selection

When using classification algorithms one must use performance measures to
evaluate the classification results. There are some well known performance mea-
sures with their inherent advantages and drawbacks. For a detailed comparison
of performance measures for classification please refer to [6].

The simple use of the classification correct rate in percentage (COR) may
lead to erroneous conclusions specially if we are dealing with unbalanced data
sets. Consider the case of a two-class problem with one class having 90% of the
cases. If all the outputs of the classification algorithm are from the majority class
we will get a COR value of 90 that can be misleading specially if one intends to
detect and classify the minority class (e.g. medical applications), therefore one
should be aware that special care must be taken when using COR in problems
with low representative classes.

There are some performance measures specially suited for two-class problems
that one must definitely use when working with these kind of datasets. Examples
of these measures are:

– AUC: The area in percentage under the Receiver Operating Characteristic
(ROC) curve, which measures the trade-off between sensitivity and speci-
ficity in two-class decision tables [7]. The higher the area the better is the
decision rule.
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– BCR: The balanced correct rate defined as 50 a
a+b + 50 d

c+d in percentage.

These two measures are based on the resulting 2 × 2 decision table, consid-
ering as abnormal class the one with lesser cases. They are specially suitable for
unbalanced datasets where an optimistically high COR could arise from a too
high sensitivity or specificity. AUC and BCR give an adequate picture in those
situations.

The same way we use BCR or AUC for two-class unbalanced datasets we
can also use ARI for unbalanced datasets with any number of classes. By ana-
lyzing each pair of elements ARI will measure not only the correct separation of
elements belonging to different classes but also the relation between elements of
the same class. In a certain way this measure pays more attention to the relation
between elements than to the relation between each element and its target label.
We can say that ARI evaluates the capability of the algorithm to separate the
elements belonging to different classes.

Consider we have a two-class problem with half of the data belonging to
each class and we apply a classification algorithm. Suppose that the result of the
classification algorithm is a classification matrix (confusion matrix) with half of
the elements as False Positives and the other half as False Negatives. In this
case the COR is 0% meaning that the algorithm is a total disaster in terms of
classification goal but, the ARI value is 1 (maximum) meaning that the algorithm
is doing the correct distinction between classes but the problem is only with the
data labeling. The elements are well separated but the given labels are incorrect
or there is some problem in the implementation of the algorithm (we could
be facing the perfect lying machine!). By combining ARI with other measures
we can gain valuable information about the performance of our classification
algorithm.

We also used ARI to perform feature selection. Since ARI gives a measure
of the agreement between partitions and in classification problems the training
data is partitioned by means of the given labels we can make a partition for each
feature and compare it with the one given by the labels. To do this we rank the
feature values by splitting them in non-overlapping equal intervals (categories)
that could be as many as the number of classes. These intervals will define the
partition to use, together with the class partition, in the computation of ARI
index. Let us consider a simple example just to clarify this concept. Table 3 rep-
resents the values of two features from a given dataset with 12 elements with the
respective class labels. By computing the ARI value for features 1 and 2 using the
partition defined by the class labels Pc = {{a, b, c, d}, {e, f, g, h}, {i, j, k, l}} and
the partition defined for each feature Pfeat1 = {{a, b, c, e}, {d, f, h, l}, {g, i, j, k}},
Pfeat2 = {{e, i, j, k, l}, {f, g, h}, {a, b, c, d}} we can rank the features according
to their ARI value. In the presented case the feature with highest ARI is feat2
and therefore is the most discriminant feature.

ARI will give us the feature’s discriminant power. Having ranked the existent
features we select a certain number of the most discriminant ones to use in our
classification algorithm. This approach is suitable for datasets with an extremely
large number of features like those related with gene expression.
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Table 3. A simple example to illustrate the use of ARI for feature selection

Element a b c d e f g h i j k l

Class label 1 1 1 1 2 2 2 2 3 3 3 3

feat1 0 0.3 0.1 0.5 0.2 0.4 0.7 0.5 0.9 1 0.7 0.4

feat2 1 0.8 0.9 0.7 0.2 0.4 0.4 0.5 0 0.1 0.1 0.2

4 Experiments

In the context of using ARI as a performance measure we have performed some
experiments in artificial and real-world datasets. As artificial datasets we used
checkerboard datasets such as the one shown in Figure 1. Checkerboard datasets
are complex, controllable and unbalanced datasets. We used two different con-
figurations: 2×2 and 4×4 checkerboards. For each one of the configurations we
built three datasets with different numbers of elements (points) but with a com-
mon characteristic: a fixed number of elements belonging to the minority class
(100). The percentage of elements of this minority class is 50, 25 and 10% of
the total number of elements. The names of these datasets in Table 5 have the
following meaning: CheckN×N(T, p) means ”checkerboard N×N dataset with a
total of T elements, p% of them of the minority class”.

Fig. 1. An example of the 4×4 checkerboard dataset with 400 points (100 elements in
the minority class: dots). Dotted lines are for visualization purpose only.

The real-world datasets are summarized in Table 4, with the top ones being
the two-class datasets, the middle ones the datasets with more than two classes
(multi-class problems) and the bottom ones the datasets used for feature se-
lection. Almost every datasets can be found in the UCI repository [8] with the
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exception of Olive [9], Breast Tissue [10] and Leukemia [14]. The datasets differ
a lot among them specially in what concerns the number of features and their
topology.

Table 4. The real-world datasets.

Data set
number of number of number of number of
elements features classes elem. per class

Clev. Heart Disease 2 297 13 2 160-137
Diabetes 768 8 2 500-268
Ionosphere 351 34 2 225-126
Liver 345 6 2 200-145
Sonar 208 60 2 111-97
Wdbc 569 30 2 357-212

Breast Tissue 106 9 6 21-15-18-16-14-22
Clev. Heart Disease 5 297 13 5 160-54-35-35-13
Glass 214 9 6 70-76-17-13-9-29
Iris 150 4 3 50-50-50
Wine 178 13 3 59-71-48

Leukemia 72 7129 2 47-25
Arcene 100 10000 2 44-56

We used neural networks (MLP’s) as classification algorithms in all prob-
lems and for the two-class problems we also used Support Vector Machines [11]
that are known to be an excellent classifier for these kind of problems. In the
experiments with MLP’s we used the following architectures: as many inputs as
the number of features, one hidden layer and one output layer for the two-class
problems and as many outputs as the number of classes for multi-class prob-
lems. The number of hidden neurons, nh, was chosen in order to assure a not
too complex network with acceptable generalization. For that purpose we took
into account the minimum number of lines needed to separate the checkerboard
classes and the well-known rule of thumb nh = w/ε (based on a formula given in
[12]), where w is the number of weights and the expected error rate. Other MLP
characteristics were chosen following [13]: all neurons use the hyperbolic tangent
as activation function; as risk functional we used the MSE and as learning algo-
rithm the backpropagation (BP) of the errors. The inputs were all pre-processed
in order to standardize them to zero mean and unit variance. In all experiments
we used the 2-fold cross validation method. In this method in each run half of
the data set is randomly chosen for training and the other half for testing, then
they are used with reverse roles (the original training set becomes the test set
and vice-versa). Each experiment consisted of 20 runs of the algorithm. After the
20 runs the mean and standard deviation of the following performance measures
were computed: AUC, COR, BCR, and ARI for the two-class problems; COR
and ARI for the multi-class problems.
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In the context of using ARI for feature selection we performed exploratory
experiments in two data sets: a Mass-spectrometric Data for detecting cancer
and; a Microarray Gene Expression Data for detecting Leukemia referred in Ta-
ble 4 as Arcene and Leukemia respectively. In both experiments we used several
different values for the number of intervals (categories) to split each feature and
we find better results when choosing values for the number of intervals around
the double of the number of classes. We selected 50 features from the 10000 of
Arcene and 15 features from the 7129 of Leukemia. We have applied a Naive
Bayes classifier in both cases.

5 Results

In Table 5 we show the mean and standard deviation (in brackets) of the several
performance measures for the performed experiments with two-class and multi-
class problems and the results for the feature selection data sets. In multi-class
problems we only computed the COR, BCR and ARI performance measures
since AUC is mainly for two-class problems (we also compute AUC in our daily
experiments with multi-class problems since it can be obtained from the confu-
sion matrix, however in that kind of problems it has a different meaning, reason
for not showing AUC in the results because it’s not appropriate for the presented
comparison).

The results for the multi-class problems show a straight correlation between
ARI and the traditional indices, specially BCR, a more reliable performance
measure. The results for the Glass dataset deserve a special attention. We can
see that the ARI value is more related with BCR than with COR. This is due
to the characteristics of this dataset. This is a highly unbalanced dataset and
by analyzing the confusion matrices (due to lack of space we do not show here
the confusion matrices) we can see that the predictions are mainly restricted to
3 classes (classes 1,2 and 6) reason for the different ARI value. The results show
that ARI is a good performance measure for multi-class problems.

The results of the two-class problems clearly show that ARI also gives valu-
able information regarding the performance of the classification algorithms.
Higher values of ARI are related with higher values of the other indices. The
extremely small ARI values for Liver dataset clearly points to a very complex
dataset with extremely overlapping classes. When analyzing the confusion ma-
trices we see that there are an extremely high number of misclassified elements
(almost 40% of the data). These are the situations where the ARI values are
smaller. Results for Diabetes also present some of this behavior.

We also can see that the ARI results for the SVM are always lower than the
ones for MLP. We do not have an explanation for this, specially considering that
the other performance measures do not show this same behavior.

In the feature selection problems the results for Leukemia are better than
those published in [14] and for Arcene the results are not as good as those
reported but we were not able to get access to all the data to perform a fair
comparison. However we think that these results are very promising.
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Table 5. The results with real-world and artificial datasets.

Dataset Performance Measures

Two-class AUC COR BCR ARI

Cleaveland HD 2 MLP 0.89 (0.01) 82.42 (1.08) 82.12 (1.03) 0.36 (0.03)

SVM 0.90 (0.01) 83.31 (0.97) 82.90 (0.96) 0.18 (0.02)

Diabetes MLP 0.83 (0.01) 76.58 (0.88) 72.44 (0.92) 0.20 (0.01)

SVM 0.82 (0.01) 75.34 (2.01) 67.85 (2.91) 0.15 (0.01)

Ionosphere MLP 0.90 (0.02) 87.81 (1.21) 84.05 (1.58) 0.56 (0.04)

SVM 0.98 (0.01) 94.26 (0.75) 93.11 (0.85) 0.45 (0.03)

Liver MLP 0.72 (0.02) 68.52 (1.97) 67.00 (1.98) 0.07( 0.01)

SVM 0.73 (0.02) 70.23 (2.49) 67.61 (2.76) 0.05 (0.02))

Sonar MLP 0.89 (0.03) 78.82 (2.51) 78.59 (2.56) 0.33 (0.06)

SVM 0.93 (0.02) 84.71 (2.01) 84.34 (2.05) 0.23 (0.03)

Wdbc MLP 0.99 (0.001) 97.39 (0.67) 97.04 (0.71) 0.87 (0.02)

SVM 0.99 (0.002) 96.79 (0.62) 96.43 (0.66) 0.28 (0.02)

Check2×2(1000,10) MLP 0.63 (0.16) 95.32 (1.26) 76.97 (6.51) 0.61 (0.10)

SVM 0.99 (0.01) 98.39 (0.49) 92.55 (2.43) 0.53 (0.03)

Check2×2(400,25) MLP 0.96 (0.08) 95.57 (2.53) 92.47 (4.73) 0.75 (0.09)

SVM 0.99 (0.004) 95.11 (1.13) 92.22 (1.83) 0.65 (0.03)

Check2×2(200,50) MLP 0.98 (0.01) 92.85 (2.48) 92.87 (2.48) 0.67 (0.06)

SVM 0.98 (0.01) 92.40 (2.09) 92.42 (2.10) 0.45 (0.05)

Check4×4(1000,10) MLP 0.71 (0.05) 93.66 (0.76) 70.77 (3.63) 0.48 (0.06)

SVM 0.98 (0.01) 96.04 (0.55) 82.04 (2.60) 0.27 (0.02)

Check4×4(400,25) MLP 0.88 (0.03) 86.22 (1.61) 77.96 (3.80) 0.48 (0.06)

SVM 0.96 (0.01) 89.70 (1.37) 84.06 (2.07) 0.35 (0.02)

Check4×4(200,50) MLP 0.83 (0.05) 78.54 (3.80) 78.51 (3.79) 0.30 (0.07)

SVM 0.91 (0.02) 83.18 (2.56) 83.12 (2.54) 0.24 (0.04)

Multi-class

Breast Tissue 64.01 (3.47) 62.40 (3.47) 0.46 (0.04)

Cleaveland HD 5 58.55 (1.43) 58.55 (1.43) 0.42 (0.03)

Glass 63.13 (3.56) 53.02 (3.56) 0.29 (0.04)

Iris 96.47 (1.17) 96.17 (1.47) 0.90 (0.03)

Olive 94.19 (0.73) 94.19 (0.72) 0.90 (0.01)

Thyroid 95.19 (3.09) 92.64 (3.09) 0.84 (0.09)

Wine 97.42 (1.31) 97.42 (1.30) 0.92 (0.04)

Arcene 0.76 74.00 74.00 0.22
Leukemia 0.98 91.18 92.50 0.67

6 Conclusions

We presented and proposed in this work the use of an unsupervised classification
performance measure in supervised classification problems. We have presented
several experiments that show the validity of ARI index as a performance mea-
sure in classification both in two-class and multi-class datasets. We have showed
that ARI is especially good for multi-class classification. By analyzing the rela-
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tions between pairs of elements belonging to each predicted class and the corre-
spondent label ARI gives valuable information about the correct separability of
the classes.

We also presented two preliminary experiments that show that ARI can also
be used for feature selection specially for datasets with a high number of features
but we are conscious that this issue deserves a more detailed study particularly to
evaluate the influence of the number of intervals (categories) in the final results.

Finally, we must say that we use this index in our daily experiments and it
shows to be useful in some of them, therefore we advise all the researchers to
include this index as a measure of performance of their classification algorithms.
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