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Abstract—Clustering algorithms are being widely used on
biomedical data. They aim to extract important information
that can be used to improve life conditions by helping special-
ized technicians on the decision process.

Clustering algorithms based on information theory concepts
claim that by using higher order statistic they are able to
extract more information from the data and therefore provide
much better results.

In this work we try to verify this claim by comparing the
performance of some entropic clustering algorithms against
more conventional ones. Results of the performed experiments
are not conclusive but they seem to indicate that this kind
of entropic algorithms may provide some improvements when
clustering biomedical data.

I. INTRODUCTION

In the past decades, a huge amount of research has been
conducted using medical or biomedical data. Researchers
have tried to extract information from this particular kind of
data using methods of machine learning or computational
intelligence. One of the research areas consists on trying
to categorize, segment or distinguish different groups on a
given dataset. This approach usually known as clustering
helps on the decision process that in biomedical field as-
sumes special importance.

One of the main problems in the clustering process arrives
when data possesses some unusual structure causing the
discovery of different groups much more difficult than usual.
Basic clustering algorithms like k-means usually deal easily
with globular or hiper-ellipsoidal groups. If the structure of
the data is more complex it is expected that these kind of
algorithms present worst results.

Since Shannon’s work on information theory [1] that re-
searchers try to apply entropy and related concepts on differ-
ent disciplines and particularly to machine learning. Several
entropic based clustering algorithms were also created and
developers claim that their algorithms achieve much better
results in different kinds of datasets. In this work we try
to evaluate the usefulness of entropic clustering algorithms
on biomedical data. We compare them against three spectral
clustering algorithms, one density based clustering algorithm
and also against k-means.

This paper is organized as follows: in the next section
we make a brief overview on clustering; in Section III we

describe the clustering algorithms used in this comparison;
in Section IV we present the datasets and the metric used to
evaluate the clustering performance and in the final sections
we present the results, the discussion and we draw some
conclusions.

II. BRIEF OVERVIEW ON CLUSTERING

Clustering is an unsupervised learning process of finding
structure in data. More specifically, it aims to group objects
based on their similarity and to discriminate groups based
on its elements dissimilarity. Clustering is consider to be a
NP problem with no unique solution what makes clustering
tasks difficult to implement and to evaluate. As opposite to
classification problems where metrics based on class labels
may be used to evaluate classification results, data usually
used in clustering is not tagged and results must be evaluated
using some clustering validation metrics [2]. There are three
approaches to investigate cluster validity: external, internal
and relative criteria. To avoid the use of these criteria one
can evaluate the performance of clustering algorithms by
using labeled data usually used on classification. By doing
this we can compare the clustering results with the class
labels using some specific performance indexes such as the
Advanced Rand Index that we will describe later.

Clustering algorithms can usually be divided in several
groups based on their clustering method: partitional, hi-
erarchical, density-based and grid-based algorithms. Hier-
archical clustering algorithms can further be divided into
agglomerative or divisive algorithms according respectively
to the decreasing or increasing number of clusters they
produce at each step. K-means is an example of a partitional
algorithm.

Entropy and related concepts are being used in cluster-
ing following different strategies. Entropy can be used for
instance as a measure of intra or inter-cluster evaluation,
as an objective function combined or not with other clus-
tering methods or as a measure to compute similarity or
dissimilarity matrices. One of the main disadvantages of
entropic clustering algorithms is their higher computational
complexity when compared with more traditional ones.

Clustering can be used in different areas like Image
Processing and Pattern Recognition, Market segmentation,



Document classification, Gene analysis or Sociometry data
analysis.

III. CLUSTERING ALGORITHMS USED IN THE
EXPERIMENTS

A. Entropic Clustering Algorithms

Entropic clustering algorithms make use of information
theoretical concepts such as mutual information (MI), Shan-
non’s entropy, Renyi’s entropy or even Havrda-Charvat’s
entropy to perform clustering. Entropic clustering tries
to use the higher order statistics to extract higher order
information from the data. Examples of entropic based
clustering algorithms are the COOLCAT [3], that performs
clustering on categorical data, the MECA algorithm [4],
that combines entropy with fuzzy clustering, the minimum
entropic clustering (MEC) [5] that tries to minimize entropy
and uses an initial partition given by another clustering
algorithm, the LEGCLust [6], that combines hierarchical
and graph approaches, or even the more recent minCEntropy
(MCE) [7] that uses the conditional entropy for quantifying
both clustering quality and distinctiveness.

In our experiments we make use of LEGClust, minimum
entropic clustering (MEC) and minCEntropy (MCE). In the
following we present each one of these three algorithms.

LEGClust is an hierarchical algorithm that uses graphs
based on an entropic dissimilarity matrix. It computes
Rényi’s quadratic entropy between pairs of points to eval-
uate the dissimilarity between them and build an entropic
dissimilarity matrix. Based on this matrix an hierarchical
algorithm is used to build the clusters using an aglomerative
approach. Rényi’s quadratic entropy is estimated by

ĤR2
= − log

 1

N2

N∑
i=1

N∑
j=1

G(xi − xj ; 0, 2h2I)

 (1)

where N is the number of points x, G(.), a Gaussian kernel,
m, the dimension of x, h, the Parzen window size and I the
identity matrix. LEGClust algorithm builds a dissimilarity
matrix by computing the entropy of every point in a given
neighborhood. In a second stage it builds a proximity matrix
constituted by layers of sub-graphs based on the dissimilarity
matrix. In the final stage and using a hierarchical approach
it creates clusters using the proximity matrix. One of the
drawbacks of this algorithm is that it needs to tune 3 pa-
rameters: the neighborhood size, the Parzen window size and
the minimum number of connections to build the clusters.
One of the advantages of LEGClust is that it can produce
arbitrarily shaped clusters.

Minimum Entropic Clustering (MEC) is an algorithm
that uses Havrda-Charvat’s conditional entropy and the fol-

lowing objective function:
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where n is the number of points, m is the number of clusters
and p(cj |xi) is the conditional probability that is estimated
by means of the Parzen window method and also by k-
nearest neighbors. This is an iterative algorithm that tries
to reduce conditional entropy starting by a initial partition
given by k-means. In each step of the algorithm a rearrange-
ment of the data is performed by shifting a point from a
cluster to another and computing the conditional entropy. If
there is a reduction the point is assigned to the new cluster.
The algorithm stops until there is no rearrangement that
improves entropy. Three parameters are needed: the number
of clusters for the initial partition, the Parzen window size
and the α value that determines which formula to use in (2).

minCEntropy (MCE) is a partitional clustering algorithm
with an objective-function-oriented approach to generate
alternative clusterings that uses conditional entropy for quan-
tifying both clustering quality and distinctiveness, resulting
in an analytically consistent combined criterion. It uses the
following objective function:

C = argmin

{
K∑
k=1

p(ck)H2(X|C = ck)

}
(3)

where K is the number of clusters and H2 is the Havrda-
Charvat quadratic conditional entropy that can be estimated
by

H2(X) = 1− 1

N2

N∑
i=1

N∑
j=1

G(xi − xj , 2σ2) (4)

if one uses the Parzen window method with a Gaussian
kernel G(.) to estimate the probability density function. This
algorithm has a similar approach as the MEC algorithm by
trying to evaluate at each step the change in entropy when
assigning a point to a different cluster. Three parameters
are needed: the number of clusters for the initial partition,
the Parzen window size and the number of steps of the
algorithm.

B. Other Clustering Algorithms

In the following we briefly describe spectral clustering,
mean-shift and k-means algorithms used on the comparison
against entropic clustering algorithms.

The rationale of spectral clustering is to use special
properties of the eigenvectors of a Laplacian matrix as the
basis to perform clustering. The Laplacian matrix is based
on an affinity matrix, A, built with a similarity measure. The
most common similarity measure used in spectral clustering



is Aij = exp
(
−d2ij/2σ2

)
, where dij is the Euclidian distance

between vectors xi and xj and σ is a scaling parameter. With
matrix A, the Laplacian matrix L is computed as L = D−A,
where D is the diagonal matrix whose elements are the sums
of all row elements of A.

There are several spectral clustering algorithms. We use
here three different ones:
• The Shi and Malik normalized cut algorithm [8] that

perform cutting using the second smallest eigenvector
of the “normalized” Laplacian matrix.

• The Ng and Jordan algorithm [9] that uses the highest
eigenvectors as input to another clustering algorithm.

• The Perona and Freeman algorithm [10] that is related
with Shi and Malik normalized cuts algorithm and uses
the concept of affinity factorization to build the clusters.

We also used Mean shift [11] in the comparison. Mean
shift is a density based clustering algorithm mostly used on
image analysis. It determines density associated with each
point by applying a kernel in a neighborhood of that point
in order to find local maximums of the density function that
are used to build the clusters.

The final algorithm is the well known k-means. K-means
is an iterative algorithm that starts by defining a given
number of centroids and at each step assigns each point to
a given cluster depending on the distance to each centroid.
The centroids are then updated until a minimum of a distance
based objective function is achieved.

IV. DATASETS AND METRICS

A. Datasets

Since the purpose of this work is to evaluate entropic clus-
tering algorithm on biomedical data we chose 23 publicly
available datasets of this kind summarized in Table I. These
datasets are usually 2-class problems. The reason is related
with the fact that the most common medical and biomedical
problems deal with the existence or not of a certain disease.
Datasets with more classes are more uncommon and are
usually related with several stages of the disease or a certain
clinical or health condition.

Datasets Breast Cancer W., Column 2C, Column 3C, Lung
Cancer-uci and Spectf can be obtained in the UCI repository,
Asthma, Babies, Growth, Surgery, Weights and Xray were
obtained from [12], Acath, Diabetes, Dmd, Dominican,
Gbsg, Pbc, Prostate and Stress echo can be found in [13]
and Depress, Lung cancer-ucla and Lung can be downloaded
from [14].

B. Adjusted Rand Index

There are several performance indexes for cluster eval-
uation. In this work we use the Adjusted Rand Index
(ARI) [15] that measures the correspondence between two
partitions of the same data and its based on how pairs
of objects are classified in a contingency table. This is a
very useful measure when we want to evaluate clustering

Table I
DATASETS CHARACTERISTICS.

Name Cases Features Classes
Acath 2258 5 2
Asthma 2464 3 2
Babies 256 3 2
Breast cancer W. 699 10 2
Column 2C 310 6 2
Column 3C 310 6 3
Column full 620 6 4
Depress 294 10 2
Diabetes 366 13 3
Dmd 185 5 3
Dominican 318 3 2
Gbsg 686 7 2
Growth 277 6 2
Lung cancer-uci 27 102 3
Lung cancer-ucla 327 4 2
Lung function 150 36 4
Pbc 276 13 2
Prostate 483 19 2
Spectf 248 88 2
Stress echo 558 15 2
Surgery 126 6 2
Weights 550 10 4
Xray 150 10 2

algorithms and when the labels are known because we can
compare the clustering results with the true classes.

Consider a set of n objects S = {O1, O2, ..., On} and
suppose that U = {u1, u2, ..., uR} and V = {v1, v2, ..., vC}
represent two different partitions of the objects in S such
that ∪Ri=1ui = S = ∪Cj=1vj and ui ∩ ui′ = ∅ = vj ∩ vj′
for 1 ≤ i 6= i′ ≤ R and 1 ≤ j 6= j′ ≤ C. Given two
partitions, U and V , with R and C subsets, respectively,
the contingency Table II can be formed to indicate group
overlap between U and V .

Table II
CONTINGENCY TABLE FOR COMPARING PARTITIONS U AND V .

Partition V

Group v1 v2 · · · vC Total

u1 t11 t12 · · · t1C t1.
U u2 t21 t22 · · · t2C t2.

...
...

...
. . .

...
...

uR tR1 tR2 · · · tRC tR.

Total t.1 t.2 · · · t.C t.. = n

In Table II, generic entry, trc, represents the number of
objects that were classified in the rth subset of partition R
and in the cth subset of partition C. Considering the total
number of possible combinations of pairs

(
n
2

)
from a given

set one can represent them in four different types of pairs:
a - objects in a pair are placed in the same group in U and



in the same group in V ;
b - objects in a pair are placed in the same group in U and
in different groups in V ;
c - objects in a pair are placed in the same group in V and
in different groups in U and;
d - objects in a pair are placed in different groups in U and
in different groups in V .

This leads to an alternative representation of Table II as
a 2 × 2 contingency table (Table III) based on a, b, c, and
d.

The values of the four cells in Table III can be calculated
using the values of Table II by:

a =
R∑
r=1

C∑
c=1

(
trc
2

)
=

(
R∑
r=1

C∑
c=1

t2rc − n

)
/2 (5)

b =
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(
tr.
2

)
− a =

(
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t2r. −
R∑
r=1

C∑
c=1

t2rc

)
/2 (6)

c =
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c=1

(
t.c
2

)
− a =

(
C∑
c=1

t2.c −
R∑
r=1

C∑
c=1

t2rc

)
/2 (7)

d =

(
n

2

)
− a− b− c

=

(
n

2

)
−

R∑
r=1

(
tr.
2

)
−

C∑
c=1

(
t.c
2

)
+ a

=

(
R∑
r=1

C∑
c=1

t2rc + n2 −
R∑
r=1

t2r. −
C∑
c=1

t2.c

)
/2

(8)

where trc represents each element of the R × C matrix of
Table II.

Table III
SIMPLIFIED 2× 2 CONTINGENCY TABLE FOR COMPARING PARTITIONS

U AND V .

Partition V

U
Pair in Pair in

same group different groups

Pair in same group a b
Pair in different groups c d

Several different performance indexes such as the Jac-
card [16] and Rand [17] indexes are computed using these
four values. To overcome some limitations of these indexes
such as the problem that the expected value does not take a
constant value some improved measures were created. Ex-
amples are the Fowlkes-Mallows [18] Index or the Adjusted
Rand Index (ARI) proposed by Hubert and Arabie [15] as an
improvement of Rand Index. ARI is in fact recommended as
the index of choice for measuring agreement between two
partitions in clustering analysis with different numbers of

clusters [19]. It can be computed as:

ARI(U,V ) =

(
n
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
n
2

)2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]
(9)
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with expected value zero and maximum value 1.

V. RESULTS AND DISCUSSION

In Table IV we present the best results (ARI values) of the
performed experiments. This means that we have tuned the
parameters for each algorithm in order to obtain them. The
best result for each dataset is underlined. In the last column
we present the number of best results for each algorithm.
There are some negative values in the referred table but this
has to do with the estimation of the expected value in ARI
index what can lead to small deviations and produce small
negative values when the result is very close to zero.

Results show that there is not, as expected, a unique
algorithm that produces the best results for all datasets.

The first important thing that one can see on the results is
that the ARI values are in general extremely small indicating
that the clustering result is very poor. One can infer from this
fact that these datasets are highly complex and the existence
of groups in the data is very dubious. Usually, the classes in
this kind of data are very overlapped and consequently the
groups are not well defined making the clustering process
much more difficult.

When comparing the results of the clustering algorithms
on the 23 datasets, one can see that entropic based clustering
algorithms present better results on 15 of them and the
other algorithms present better results on 13. In general
terms, one may conclude that there is no clear superiority
of a specific group of algorithms but entropic clustering
algorithms present a slightly better performance. However,
when performing an individual comparison, Minimum En-
tropic Clustering (MEC) presents a clear advantage over the
others with a considerable higher number of best results
(8). The second bests are LEGClust and k-means, each one
with 4 best results (half the number of MEC). Results of
spectral clustering are very poor when compared to entropic
clustering and even k-means. Mean-Shift algorithm presents
the worst results on the performed experiments.

VI. CONCLUSION

The purpose of this work was to evaluate entropic based
clustering algorithms on biomedical data and to see if there
was a significant difference on the performance of these



Table IV
RESULTS (ARI INDEX) OF THE DIFFERENT ALGORITHMS FOR THE 23 BIOMEDICAL DATASETS.

Spectral CLustering
LEGC MEC MCE k-means SM NJ PF MS

Acath 0.000 0.020 0.115 0.008 0.006 -0.016 -0.016 0.000
Asthma 0.016 0.021 0.042 0.020 -0.004 0.042 0.042 0.021
Babies 0.080 -0.004 0.018 -0.004 0.001 -0.039 0.000 0.000
Breast cancer W. 0.721 0.662 0.450 0.691 0.004 -0.001 0.003 0.172
Column 2C 0.108 0.187 0.166 0.106 0.000 0.034 0.000 0.001
Column 3C 0.270 0.251 0.217 0.275 0.001 0.149 0.000 0.008
Column full 0.152 0.116 0.141 0.126 0.007 0.058 0.000 0.047
Depress 0.035 -0.007 0.041 -0.004 0.000 -0.002 0.061 0.036
Diabetes 0.120 0.063 0.054 0.065 0.000 0.004 0.001 0.000
Dmd 0.085 0.138 0.127 0.199 0.010 0.009 -0.002 0.019
Dominican 0.014 -0.009 -0.008 -0.009 0.017 -0.002 0.003 -0.002
Gbsg 0.005 0.045 0.043 0.043 0.000 0.026 0.000 0.000
Growth 0.070 0.087 0.007 0.066 0.000 0.003 0.000 0.028
Lung cancer-uci 0.219 0.224 0.026 0.224 0.296 0.296 0.074 -0.004
Lung cancer-ucla -0.003 0.103 0.0072 0.007 0.004 0.007 0.007 0.143
Lung function 0.028 0.035 0.021 0.026 0.005 0.095 0.000 -0.008
Pbc 0.174 0.273 0.253 0.273 0.025 0.025 0.014 0.026
Prostate 0.006 0.527 0.006 0.000 0.014 0.001 0.003 -0.003
Spectf 0.007 -0.103 -0.086 -0.103 0.023 0.003 -0.003 -0.081
Stress echo 0.003 0.004 -0.006 -0.022 0.001 -0.002 -0.001 -0.019
Surgery 0.001 0.025 0.019 0.025 0.000 0.004 -0.004 -0.011
Weights 0.006 0.013 0.004 0.001 0.001 0.000 0.000 -0.005
Xray 0.000 -0.008 0.341 -0.007 -0.010 0.320 0.320 -0.030

Best results 4 8 3 4 3 3 2 1

LEGC - LEGClust; MEC - Minimum Entropic Clustering; MCE - minCEntropy;
SM - Shi & Malik; NJ - Ng & Jordan; PF - Perona & Freeman; MS - Mean-Shift

algorithms when compared with other ones that are usually
considered in the literature.

Results show that the difference is not very significative
when evaluating the results on general terms but when
considering each algorithm individually there is a superior
performance of Minimum Entropic Clustering algorithm.
Since the number of parameters to tune in MEC is 3 and
in k-means we only need the number of clusters one should
weight the pros and the cons when deciding which one to
use in the future.
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